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We study optimal test design in settings where the testing variable is itself a
choice. Agents with heterogeneous productivity invest inputs (such as money or
effort) to increase outputs (such as product quality or human capital) that they
sell in a competitive market. The market cares only about outputs and receives
credible information solely through the ratings assigned by a public test. Aiming to
maximize expected output, the test designer may base ratings on inputs, outputs, or
any combination of the two. Although both the market and the designer ultimately
care only about outputs, output-only tests are always dominated because they allow
high-productivity agents to “coast on their talent” and pass with minimal input.
By contrast, input-only tests best incentivize input investments across all types and
are optimal if the designer can coordinate the market and agents on her preferred
equilibrium. Yet input tests are fragile: because they provide no guarantee on output,
which still depends on type, they are vulnerable to no-investment equilibria. To
balance robustness to adverse equilibria with input incentive provision, the designer
adopts tests that optimally combine input and output components. For pass-fail
tests, the optimal design takes the form of a step test with one input threshold and
two output thresholds: agents pass either by meeting the higher output bar or by
satisfying the minimum output requirement along with the input threshold.
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1 Introduction

Certification systems are central to modern economic activity. They influence mar-
ket transactions, hiring and promotion, and the conduct of firms across industries.
Although certifications disclose performance information, their impact extends well
beyond disclosure: by shaping market beliefs, they also shape the incentives and
effort choices of those being evaluated. As a result, designing a certification system
is fundamentally an incentive-design problem.

A defining feature of certification systems is that designers must decide which
aspects to evaluate and communicate through ratings. A certification can focus on
outputs, the attributes ultimately valued by the market (e.g., product quality), or it
can focus on inputs, meaning procedures, practices, or investments that are expected
to improve performance and that the market does not value for their own sake but
only insofar as they raise output. While the literature has focused on how a given
performance measure should be mapped into ratings, it has largely overlooked how
inputs and outputs should be combined into an effective performance measure in
the first place. Our contribution is to place this choice at the center by jointly
endogenizing the scoring rule that combines inputs and outputs into a performance
measure and the rating rule that maps this measure into observable ratings.

Accounting for the scoring design matters both theoretically and in practice. Cer-
tification authorities often have broad discretion over what to test, and this choice
directly shapes incentives, the informativeness of ratings, and ultimately which equi-
libria may ultimately arise. ENERGY STAR focuses entirely on outputs by certifying
appliances whose measured energy use falls below category specific thresholds. ISO
9001 takes the opposite approach by certifying documented quality management pro-
cesses such as standardized procedures, training sessions, and internal audits rather
than the realized quality of a firm’s products. Even organic certifications, rather
than relying on output measures, such as random testing of farmers’ produce, choose
instead to focus on inputs. They verify production practices such as restrictions on

synthetic pesticides and land use methods, but they do not directly test proper-



ties of the final product.? Most systems instead adopt hybrid designs. For example,
LEED certification for buildings awards points both for meeting specific performance
benchmarks and for adopting verifiable design and construction practices.

This raises a fundamental question: How should a certification system jointly de-
sign its scoring and rating rules to best induce the performance valued by the market
and the designer? In a setting with heterogeneous agents, our analysis shows that
the answer hinges on the designer’s concerns about adverse equilibrium outcomes.
Although only output is ultimately valued, a certification test should focus solely on
inputs if the designer expects the most favorable equilibrium to follow any certifica-
tion design. In contrast, a designer should combine input and output components if
she is concerned about adverse equilibria.

Formally, we consider a model in which agents can invest inputs (such as money
or effort) to improve outputs (such as product quality or human capital) at heteroge-
neous input-to-output conversion rates (productivity types). These outputs are then
supplied in a competitive market that values the output itself but cannot observe it
directly. Credible communication occurs only through the certification offered by a
designer who aims to maximize total output and can commit to a testing technology
that specifies (i) the scoring rule, which determines how inputs and outputs are com-
bined into a performance measure, and (ii) the rating rule, which maps this measure
into observable ratings. After observing the test design and the ratings received by
agents, the competitive market offers payments equal to each agent’s conditional
expected output.

We start by considering simple pass—fail tests that focus on a single dimension:
inputs or outputs. Intuitively, a pure output test is the most informative because it
directly evaluates the only outcome the market cares about. However, such a test
allows high-productivity agents to “coast on their productivity,” passing the test with
lower input investment than their lower-productivity peers. This is particularly costly
for the designer because input investments by high-productivity agents generate the

largest gains in output. A pure input test avoids this problem by inducing the

!An organic zucchini grown in Chicago may still be less healthy than a non-organic zucchini
produced under better growing conditions in southern Illinois.



same input investment from all passing agents, regardless of their type, thereby
eliminating the possibility to scale down investments for high productivity types.
For this reason, an input test outperforms any other pass—fail test when the market
is sufficiently optimistic about passing agents. Yet without any guarantee on output,
pure input tests expose the designer to adverse equilibria in which the market holds
more pessimistic beliefs, assigns little value to certification, and discourages agents
from investing any input at all.

These observations highlight the strengths and weaknesses of each test dimen-
sion. Output-based tests discipline market beliefs but provide only weak incentives
for high-productivity agents. Input-based tests offer symmetric incentives for all
agents but their effectiveness is severely constrained under designer-adversarial equi-
librium selection. How should the test design combine input and output components
optimally, so as to provide strong investment incentives while remaining robust to
equilibrium selection?

Our main result shows that the optimal pass—fail test combines input and output
components in a flexible yet simple manner. The optimal design specifies two output
thresholds and one input threshold. An agent passes if she produces output above
the higher output threshold or if she satisfies a minimum output requirement and
also meets an input requirement. It is worth to note that this characterization holds
for general convex cost functions and arbitrary distributions over productivity types
not of minor technical assumptions.

The logic is as follows. The minimum output threshold guarantees a floor on the
output of passing agents and therefore a floor on the market value of certification.
To rule out zero-investment equilibria, the test must ensure that at least the highest
productivity type is willing to invest enough to pass even when the benefit from
certification is at this lower bound. This requirement imposes an upper bound on
the input the highest type can be asked to invest and therefore on the output it
can be asked to generate. Since no agent can be asked to meet a higher passing
output than the highest type, the designer sets this upper bound as the maximum
output threshold, above which agents pass the test directly regardless of their input.

Together, these minimum and maximum output thresholds ensure that the test is



robust to adversarial equilibrium selection.

To maximize input investment by intermediate types, the designer then intro-
duces an input threshold for agents who do not meet the maximum output threshold.
In the unique equilibrium induced by this test, high productivity types pass by reach-
ing the maximum output threshold, earning positive rents because the equilibrium
value of certification exceeds the test’s minimum output requirement. Intermediate
types instead pass by meeting both the minimum output requirement and the in-
put threshold, and are left indifferent between passing and failing. These two paths
to passing raise input investment up to the incentive limit while preserving robust-
ness to designer-adversarial equilibrium selection. Finally, note that the minimum
input requirement may discourage the lowest productivity types from making any
investment.

Beyond the baseline environment, we show that our insights extend along two
important dimensions. First, our results are not tied to a specific production tech-
nology. The same step-test structure arises under any production function that is
increasing in input and weakly supermodular in input and type, including additive
specifications. Second, allowing for arbitrarily rich rating schemes does not alter
the core logic of optimal test design. With multiple ratings, an optimistic designer
continues to rely on pure input tests, while the pessimistic designer must still em-
ploy composite tests that combine input and output components to discipline market
beliefs and provide high types with sufficient investment incentives.

Taken together, our results highlight that the choice of what to test is central to
the design of effective certification systems. Selecting the dimensions of performance
that enter the test, rather than only deciding how to map a fixed performance mea-
sure into ratings, shapes incentives, determines which equilibria arise, and ultimately

governs both the informational content and welfare consequences of certification.

1.1 Literature review

Our paper primarily contributes to the literature on the design of tests, grades, and

allocation rules, while sharing features with the signaling literature.



Within the growing literature on allocation design, researchers have examined
how a principal optimally designs allocation rules based on an exogenously given
output measure that heterogeneous agents may affect (at a cost) in their attempt
to obtain the allocated good. While most studies consider settings in which the
principal derives no direct benefit from this output investment—treating it merely
as a means for agents to misrepresent their type (e.g., Perez-Richet and Skreta (2022,
2023))—we focus on a setting where such investment is productive, and the principal
aims to maximize it. In this respect, our paper is related to Augias and Perez-Richet
(2023), which establishes a regularity condition on the distribution of agents’ types
that renders a deterministic pass-fail test optimal. In the context of certification, our
paper is related to Xiao (2025), who studies optimal certification design under output
testing and also applies optimal control methods to identify the optimal test. Our
paper departs from this literature by considering settings where the value of being
allocated the good (i.e., passing the test) is endogenous rather than exogenously
given and, most importantly, by allowing the principal to choose on which variable
to design the allocation rule.

Within the theoretical literature on education, a strand pioneered by Becker and
Rosen (1992) and Costrell (1994) analyzes how different grading rules incentivize
students’ effort and academic achievement. Dubey and Geanakoplos (2010) demon-
strates that coarse grading can incentivize status-motivated students to work harder,
while Popov and Bernhardt (2013) indicates that increased demand for skilled jobs
may lead to grade inflation, and Boleslavsky and Cotton (2015) further argues that
the mechanism driving grade inflation may also result in higher investments in school
quality when competition rises. Finally, Bizzotto and Vigier (2021) shows that sort-
ing students into schools based on ability (stratification) and using lenient grading
at top-tier schools maximizes student effort. We contribute to this literature by en-
dogenizing the mapping from inputs/outputs to scores, thereby enabling the joint
design of scoring and grading rules.

Our model also relates to the extensive literature on signaling, in that agents
can exert costly efforts to influence their payoffs through outsiders’ beliefs (see, for
example, Spence, 1978; Daley and Green, 2014; Wolinsky, 1993; Frankel and Kartik,



2019; Ball, 2019; Frankel and Kartik, 2022). However, we differ from this literature by
assuming that the costly action is productive rather than wasteful and that a designer
maps a combination of inputs and outputs into a public signal about agents.

Finally, our paper relates to the growing literature in mechanism design depart-
ing from partial implementation and considering a more cautious designer who is
concerned about its minimum equilibrium payoff (see, for example, Ma, 1988; Berge-
mann and Morris, 2009; Dworczak and Pavan, 2022; Kapon, 2023; Halac, Lipnowski,
and Rappoport, 2024; Mishra, Patil, and Pavan, 2025).

2 Model

We consider a model where heterogeneous agents invest costly inputs to improve
output quality and can inform the market about their investments and performance
only through certification provided by an intermediary. This framework captures
settings ranging from firms that invest resources to improve product quality but must
rely on certification (e.g., ISO, LEED, ENERGY STAR) to convince the market, to
students who invest input to acquire human capital but can credibly demonstrate

achievements only through exam results or degrees.

Agents We consider a unit mass of agents whose productivity types are indepen-
dently and identically distributed according to an atomless, continuously differen-
tiable cumulative distribution function F with density f and support [A, A\] C R, .
Each agent privately knows her productivity type A\. Without loss of generality, we
assume that agents with the same type behave identically, so that we can index
them by their type A. An agent of type A chooses an input e € R, to generate
output 7(e, A) = b+ A -e, where b > 0 denotes the baseline output in the absence of
investment.? The cost c(e) of choosing input e > 0 is independent of an agent’s type
with ¢ : R, — R, nonnegative, increasing, and strictly convex, satisfying ¢(0) = 0
and ¢(0) = 0.

2In Section 5.2, we discuss how our results extend to general (weakly) supermodular production
functions.



Certification design Agents can credibly communicate with the market only
through a certification test offered by a designer whose objective is to maximize
the expected output generated by the agents. Formally, a test T € T is a right-
continuous surjective function 7' : RZ — G that maps each displayed input-output
pair (e?, ) to a public rating g = T(e?,7%) € Gy. While agents cannot fabricate
evidence, they may withhold it: an agent of type A who chooses input e may display

in the certification test any pair (e?, 7?) < (e, m(e, \)).

Market A perfectly competitive market compensates agents according to their
expected output. As ithe market observes neither inputs nor outputs directly,

the market forms expectations in equilibrium solely based on the public certifica-
tion design and the agents’ realized ratings. Thus, given a test design 7', the market
offers a pay schedule Wr(g) = E[r | T, g]. We denote the set of feasible payment for
a given test design by W(T).

Timing The game unfolds as follows:

1. The designer publicly announces a certification test 7.

2. Each agent of type A chooses (i) an input e, yielding output 7(e, ), and (ii) a

pair (e4, 7?) < (e, (e, \) to display in the certification test.

3. Given the test T and the reported pair (e?, 7?), each agent receives a rating

g=T(e 7).

4. Observing T" and each agent’s rating g, the market updates its belief about the
agent’s output 7 and makes a payment of Wr(g) = E[r | T, ¢].

Agent’s problem Given a certification test 7" and an anticipated payment sched-
ule Wy : Gy — Ry, each agent A\ chooses an input ey and a report (e¢,n§) <

(ex,m(ex, ) to maximize her utility Wy (T(e$, 78)) — c(en).



For each test T, we define the agent’s best-reply correspondence mapping types
and wage schedules into actions by ¥p : [A, A] x W(T) = R3:

(1) (N, W) = arg max Wr (T(ed,ﬂd)> —c(e).

e€Ry, (ed,md)<(e,\e)

Solution concept We apply perfect Bayesian equilibrium (PBE), as defined in Fu-
denberg and Tirole (1991), as our solution concept. The only additional restriction
that we impose on off-path beliefs is the following natural requirement on the con-
sistency of market beliefs and the test design. The market’s belief about an agent’s
output given a rating g must not be lower than the minimal output level required
for the lowest type, A, to achieve this rating.?

Note that, for many test designs, the game admits multiple equilibria sustained
by more or less pessimistic off-path market beliefs. Let &p denote the set of all
PBE that may arise in the continuation game following 7', and let £ € €7 denote
the equilibrium selected under a specified equilibrium-selection criterion. In the

following, we will focus on the designer’s most- and least-preferred equilibria.

Designer The designer selects a test to maximize total output of the agents.* For
any test design T, let £ denote the equilibrium anticipated by the designer in the
continuation game following 7', and let 5”(T') € R, denote the input chosen by type
A in &9 The designer’s problem is

2 max E[\es(T)] .

(2) max B[\ e3(7)]

Naturally, the optimal test design depends on whether the designer expects her pre-
ferred equilibrium to arise in the continuation game or whether she is instead con-

cerned with adverse equilibria.

30ur results remain qualitative unchanged if we were to restrict off-path beliefs further to be
constructed only from undominated actions.

4Note that we assume that the designer is not a “gatekeeper;” that is, the certification is not
necessary to participate in the market but only a tool to communicate output to the market. Hence,
the designer cares about total output rather than output conditional on obtaining certification.



While the existence of an optimal test is straightforward in the optimistic case,
the pessimistic scenario is technically more subtle. Typically, no test T™ attains the
designer’s worst-case payoff; there exists a sequence of tests (7),)nen yielding pro-
gressively higher worst-case payoffs, with a limit test that admits, in addition to the
limit of the associated equilibrium strategies sequence, another, worse, equilibrium.
To address this issue and to avoid trivial nonexistence/multiplicity from agent’s in-
difference, we follow Halac (2025) and impose a tie-breaking rule that breaks agents’

indifference in favor of higher inputs.®

Definition 1 (Robust PBE). Given a test T, a PBE Er is robust (an rPBE) if there
exists no other PBE Er such that the following hold.

(i) Lower payoff. The designer obtains a strictly lower payoff in Er.

(ii) Favorable tie-breaking. Under the pay schedule Wy in Er, an agent who is

indifferent between two input levels ¢’ > e, selects €' in Er.

We then distinguish designers by their attitude toward adverse equilibria. An
optimistic designer chooses T' to maximize her payoff in her most-preferred PBE
following T'. A pessimistic designer chooses T to maximize her payoff in the rPBE

following T'.

2.1 Discussion

Focus on output. In our model, the market care only about output (e.g., product
quality), not about inputs or productivity types per se. This captures settings in
which output represents the final good traded in the market: consumers value the
quality of the product itself, not the investments it required or whether the same

firm may produce better products in the future.

5 Alternatively, one could work with e-equilibria of the full game. If T* is the test selected in the
pessimistic-designer case (according to our analysis), then the equilibrium outcomes we describe can
be arbitrarily approximated by a sequence of least-preferred equilibrium outcomes corresponding
to a sequence of tests T,, — T™ as n — oo.

6In a human capital interpretation, output can represent next period’s productivity, so hetero-
geneity reflects accumulated stocks rather than fixed traits. The analysis then interprets certifica-
tion as incentivizing investment in future productivity rather than signaling a fixed type.



Similarly, the designer cares only about output, not about the cost of producing
it. This assumption allows us to capture settings where certification design targets
specific goals (e.g., environmental impact, safety, or reliability) whose effects may
not be fully internalized by the market. It also allows us to highlight, in the cleanest
possible way, the forces and dynamics that would still be present if the designer
placed a relatively greater value on output quality than on cost. For instance, higher
outputs produce positive externalities (such as human capital or more environmen-
tally friendly products) or input costs may represent transfers to complementary
sectors (such as wages for experts who train employees or purchases from upstream

quality suppliers) and may themselves be valuable from the designer’s perspective.

Production function. While, in line with the literature, our baseline model fo-
cuses on the simple production function 7(e, A\) = Ae, our main insights extend to
production functions that are increasing in input and weakly supermodular in type
and input (see Section 5.2). This extension is useful for settings in which baseline

quality varies across types even without certification, such as 7 = A\ + e.

Joint design. To highlight our key innovation, it is useful to equivalently reformu-
late the test design problem as one where the designer jointly chooses a scoring rule,
S Ri — &, that combines reported input—output pairs into a score, and a rating
rule, g : & — G, that maps scores into ratings, with 7" = g o s. The scoring rule
determines what is tested; that is, the relative weight placed on inputs and outputs.

For instance, a certification test can focus entirely on inputs (e.g., s(ed, 79) = e?),

entirely on outputs (e.g., s(e?, 7?) = 1), or combine the two, either linearly (e.g.,
s(ed, 1?) = ar? + (1 — a)e?) or nonlinearly (e.g., s(e?, %) = I{e? > &} + [{n? > 7}).
On the other hand, the rating rule determines how finely the score is communicated
to the market: it may reveal scores exactly or group multiple scores into the same
observable rating.

Previous work has typically treated the test variable, that is, the choice of whether
certification evaluates inputs or outputs, as exogenous, optimizing only over the

rating rule given the test variable. Our framework endogenizes both: the certifier

10



simultaneously decides what to test and how to rate.

Underreporting and test monotonicity. We assume that agents may underre-
port their input—output pairs. From an applied perspective, this captures a realistic
feature of certification environments: firms can easily conceal part of their input (e.g.,
by not documenting some training sessions or omitting certifications that attest to
the use of low-impact materials in construction) or underreport, and equivalently
derating, their realized output (e.g., by presenting a slightly defective testing unit
to the certifier or requiring call center agents to pause before answering). Whether
agents actually underreport is an equilibrium outcome. Although no agent under-
reports in equilibrium, allowing it is nevertheless important because it constrains
which tests are implementable. In particular, underreporting rules out certification
designs that reward agents for underperforming relative to another agent.

Formally, the underreporting technology delivers a monotonicity property that
we view as central to certification: if an agent reports weakly higher input and output
than another agent, she cannot receive a strictly worse rating. This test monotonicity

is the only implication of underreporting that we use in our analysis.

3 Analysis

Before introducing the designer’s optimization problem, it is useful to establish two

preliminary results. Without loss, we normalize the baseline output to b = 0.

Monotonicity. For any test 7" and pay schedule Wrp, each agent A chooses an
input ey and a report (ef,7¢) < (ex, Aey) to maximize Wy (T'(ef, 7)) — c(ey). Since
c(e) is strictly increasing, any agent achieving rating ¢ in test 7" optimally chooses

the smallest input required to obtain g. Denote this minimal input by

(3) ey? := min {e c Ry : 3(e?, %) < (e, Ae) such that T(e?, 7%) = g}.

11



Because agents may underreport their input and output levels, any rating g is at-
tainable for all agents. Thus, the minimal input ef’g is well-defined. As the output
is an increasing function of input, the minimal input decreases in A. However, the
output associated with this minimal input, )\ef’g , is increasing in A. Hence, higher-
productivity agents can achieve the same rating with weakly less input, yet attain a
higher output once they do. This monotonicity property implies that, from the de-
signer’s perspective, any test T" induces a downward-sloping mapping between agents’

types and their required minimal input, which we establish in the following lemma.

Lemma 1. For any test design T' and rating g € G, the minimal input required by
types X\, X with A\ > X required to achieve rating g satisfies

ﬁe i/ 1
T,9 )\’ :

6/\,

Proof. Suppose Z%—/z < X, Then, it follows that m(ey?,\) < 7(ey?, X') and ey <

ef}g . Hence, ez\j}j cannot be the minimal input attaining rating g for type \'.
Suppose 2%7 > 1. Then, it follows that 7(e;?, \) > w(el?, \) and e;? > e,

Hence, ef’g cannot be the minimal input attaining rating g for type A. ]

Equilibrium payments. Since any agent A attaining rating g in equilibrium does
so by exerting ef’g , it follows that, for any equilibrium & and any rating g € Gr,

the corresponding equilibrium payment W must satisfy
W(g) =E[|Ael* | A€ A(Er)|,

where AY9(Er) denotes the set of types that obtain rating ¢ in the &r.

4 Pass-Fail Tests

In this section, we restrict attention to pass-fail tests; that is, tests such that T :

R — {0,1}, where g = 0 represents failing the test and g = 1 represents passing

12



the test. In the context of certification, this implies that the choice is only on the
extensive margin, that is, whether an agent is awarded with a certificate or not.
This focus is motivated by two considerations. First, pass-fail tests are especially
common in practice due to their simplicity and transparency, and thus provide a
natural and policy-relevant benchmark. Second, as we show in Section 5.1, the main
insights from our analysis extend to environments with multi-rating tests, but the
pass-fail formulation makes the key mechanisms particularly transparent and allows
for a sharp characterization of the optimal design.

To illustrate the central tradeoffs, we first examine simple tests that assign ratings
based on a single test variable (input or output), and then show how the optimal

pass-fail test improves upon these benchmarks.

4.1 Output Tests

First, consider pass-fail output tests, where agents pass if and only if their output
exceeds 7, regardless of their input choice. Formally, T'(e,7) = I[r > 7]. Since the
market values only output, and neither input nor agents’ types per se, these tests
provide a natural benchmark.

Since inputs are costly, failing agents exert no input and produce only their
baseline output of zero. Agents who choose to pass the test and obtain the certificate
invest so that they attain exactly the required threshold 7. This uniquely determines
the payment schedule Wer in any equilibrium €7 of a pure output test: Conditional
on passing, agents receive a payment Wer(1,T) = 7, whereas, conditional on failing,
agents earn Wer(0,7) = 0.

Although all agents face the same input cost function and payment schedule,
their payoff from passing the test still depends on their productivity type A. Since
lower types require higher input to reach the threshold T, ef’l = 7/\, the payoff
from passing an output test is strictly increasing in the agent’s type. Hence, any
equilibrium of the subgame induced by T'(e, 7) = I[w > 7| has a cutoff structure. In
each equilibrium E7, there exists a cutoff type A(7) such that all agents with A > (%)

pass and all others fail. Since this cutoff type must be indifferent between passing
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Figure 1: Output test with threshold @. The black diagonal lines show the output
of the highest and lowest types at each input e; the yellow line shows the output of
the cutoff type 5\(7), for whom the cost of passing equals 7. Finally, the purple line
highlights all positive input—output combinations in equilibrium.

and failing the test, we have S\(ﬁ) = C,T@. Figure 1 illustrates the equilibrium
construction in such an output test.

Given this continuation equilibrium £, the designer’s problem reduces to choos-
ing the threshold 7 that maximizes total output. The designer faces a typical
marginal-inframarginal tradeoff. Raising 7 increases the output of all inframarginal
(passing) agents but comes at a marginal loss from shrinking the set of passing agents.

The optimal output threshold balances these two effects.

Proposition 1. The optimal output test T*(e, ) = L[ > T*| is characterized by the
unique threshold ™ > 0 solving max <1 - F(%))
In the unique equilibrium ET, the ;Uage schedule is Wer= (g, T*) = 71{g = 1}, and
agents muvest e,{* = ﬁ*/)\ Zf A > C_T—(;*) and 62\1* = 0 otherwise.

Intuitively, an output test reveals the exact value of agents to the market, but it

fails to incentivize higher inputs from high-productivity types, allowing them to coast

14



on their talent: they pass the test while investing strictly less input and obtaining a
strictly higher payoff than the cutoff type. Thus, the agents with the highest returns

to input investments end up the least of those who invest at all.

4.2 Input Tests

Next, consider pass—fail input tests T'(e,7) = I[e > €|, where agents pass if and
only if their input exceeds a threshold € > 0, regardless of the output they produce.
These tests do not directly provide the market with information about agents’ out-
puts. Nevertheless, they contain information about their expected about through
the equilibrium beliefs about which agents passed the test. While input tests con-
vey information only about agents’ input, they prevent high-productivity types from
coasting on their talent. All agents must invest the same input to pass. Moreover,
because input costs are type independent, all agents face the same incentives.

Under a pure input test, failing agents optimally invest eE\F’O = 0, producing no
output. Each passing agent \ invests eip’l = e, producing output m(e, \) = A\e. Thus,
while the payment to agents who fail the test remains W (0,T) = 0, the payment to
agents who pass the test now depends on market beliefs about the productivity of
passing agents:

W(1,T) = eEgr[A | g =1].

Hence, whether agents are willing to pass the test or not depends on the markets’
beliefs as well. Whenever these beliefs are such that W(1,7) > ¢(e), all agents
are (strictly) willing to pass the test. In contrast, when the beliefs are such that
W(1,T) < c(e) all agents have a strict incentive to fail the test. Whenever the
beliefs induce a wage equal to the cost of investing the required input e, that is,
when W(1,T) = ¢(e), all agents are indifferent between passing and failing the test.
For many input test designs, we will obtain equilibrium multiplicity generated by
the market beliefs. Hence, unlike in output testing, the optimal input test depends

on the designer’s attitude toward adverse equilibria.
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Optimistic designer. An optimistic designer assumes that the market and agents
coordinate on its preferred PBE following any input test T'(e,w) = I[e > €]. Recall
that the designer’s objective is to maximize total output. Thus, the designer will
never choose an input threshold such that no agent is willing to pass the test even
under the most optimistic market belief about passing agents’ types, that is, the
optimal input threshold must be such that c¢(€) < m(e,A). Moreover, the designer
will never choose an input threshold such that all agents have a strict incentive to pass
the test, that is, the optimal input threshold must be such that c¢(e) > Er[A]e. To
see why, note that in this case all agents passing is the unique equilibrium outcome.
However, there by slightly raising the the passing threshold all agents still have a
strict incentive to pass the test but invest more input, and thus, the total output is
higher. Defining é implicitly as the solution to ¢(¢)/é = X and é implicitly as the
solution to c¢(é)/é = Ep[)], the set of candidate thresholds for the optimal input tests
is [¢,¢].7

It is immediate that for all input thresholds in the candidate set there always
exists a PBE with a cutoff structure, that is with the property that only agents with
types above a threshold A(€) pass the test. The following lemma establishes that the

cutoff equilibrium is always the designer’s preferred equilibrium.

Lemma 2. Consider an input test T = l[e > €| with e € [é,¢é]. Then, the designer’s
preferred PBE following T is a cutoff equilibrium, that is, there exists a type A such
that agents with A > A pass the test by choosing € and agents with A < A fail the test
by choosing e = 0.

Hence, the designer’s problem amounts to choosing the best cutoff equilibrium.
Denote by :\(é) the cutoff type corresponding to an input threshold €. The optimistic
designer’s problem is therefore maxzejeq € (1 — F (:\(E)))

Pessimistic designer. Unlike its optimistic counterpart, a pessimistic designer

is concerned with adverse equilibrium outcomes. Thus, a pessimistic designer will

"Note that c(e)/e is strictly increasing in e with lim._,q c(e)/e = 0 due to the strict convexity of
c(e) and ¢(0) = ¢/(0) = 0. Hence, & and é are well-defined, unique, and satisfy é < é.
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Figure 2: Input test with threshold e: designer-preferred equilibrium. While all
types are indifferent between passing and failing at w = E[X | A > X"(e)]e = c(e),
only those with A\ > A choose to pass. The purple line thus highlights all positive
input—output combinations reached in equilibrium.

never devise a test which is such that an equilibrium exists in which all agents fail.
This places an upper bound on the input threshold that the pessimistic designer will
optimally choose. The most pessimistic belief of the market about passing agents’
productivity is that only the lowest type A passes. Hence, an equilibrium in which
all agents fail exists whenever c(¢) > \e.® The optimal input threshold for the test
designer is therefore to choose the maximum input threshold for which no equilibrium
exists in which all agents fail the test, that is, € = é. All agents pass this test and
total output is E[A]é.

Comparison A pessimistic designer ensures that all agents have an incentive to
pass the test in order to prevent adverse equilibria. This robustness does not come

for free to the designer; she has to sacrifice some output production to achieve it.

8Recall that by our tie-breaking assumption in Definition 1, ¢(€) = Me induces the rPBE in
which all agents pass the test.
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The following proposition summarizes our observations over the optimal input test.
Proposition 2. The optimal input test has the following properties.
o An optimistic designer selects e° = arg In[ax} g(1—F(\(@)) and all agents
ecle,é
above the cutoff type 5\(60 pass the test. Conditional on passing the test, the
agents receive the payment Wereo (1, T%) = E[X | X > A\(€°)]e? = ¢(2°).
In any rPBE following the input test with €°, all agents fail the test.

o A pessimistic designer selects e such that \e? = c(e?) and all agents pass
the test in the rPBE. Conditional on passing the test, the agents receive the
payment Were (g, TP) = E[A] = ¢(e).

4.3 Comparing Input and Output Tests

For the pessimistic designer who aims at incentivizing output production, the key
tradeoff is between mitigating the risk of adverse equilibria and curbing high-productivity
types’ coasting. Pure output tests certify the exact value of agents to the market re-
moving all uncertainty about their outputs, but they allow high-productivity agents
to pass with minimal input investments relative to their lower-productivity peers.
This inefficiency is particularly costly since the designer values the inputs from high-
productivity agents relatively more. In contrast, pure input tests induce uniform
inputs from all agents and can incentivize high input levels even from productive
agents. However, unless the threshold is very low (e < ¢é), they expose the designer
to adverse equilibria: because they do not guarantee a sufficient market value for
passing agents, a pessimistic market may offer low payments and discourage agents
from passing. Thus, the optimal test design ultimately depends on the designer’s

attitude toward equilibrium uncertainty.

Optimistic designer. An optimistic designer is unconcerned about potential ad-
verse equilibria and, as a result, strictly prefers input tests. To see this, consider
an optimal output test T'(e,7) = I[x > 7], and let A < X be the cutoff type who is

indifferent between passing and failing the output test in equilibrium. As lower types
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Figure 3: Improving on an output test in designer-preferred equilibrium. Replacing
an output test with threshold T by an input test withe = 7/:\ yields both inframarginal
gains (existing passers move from the purple horizontal line to the magenta vertical
line) and marginal gains (additional types pass, shown by the vertical double arrow).

must invest more input to reach the output threshold, this cutoff type must be the
agent investing the most, e?’l — 7/ ), and obtains payoff T — ¢(7/\) = 0. It turns out
that there always exists a pure input test, with the corresponding designer-preferred
equilibrium, that outperforms such an optimal output test. Consider the input test
T(e,n) = l[e > €] with threshold € = 7/\. Since
EN A= Ne—ce) > 7—¢(F) = 0,

it follows that all types above some new cutoff N < X invest e and pass the input
test. The designer gains both on the extensive and on the intensive margin: (i)
agents with A\ € [, 5\), who failed the output test, now pass the input test;and (ii)
agents with A > A, who already passed the output test, also pass the input test but

now invest € > 7/\.

19



Pessimistic designer. A pessimistic designer, by contrast, is concerned with ad-
verse equilibria and may avoid pure input tests despite their superiority in incentive-
provision. The reason being that input tests are prone to equilibrium multiplicity
and thus to the existence of low-investment equilibria. Indeed, the maximal input
that can be robustly induced in equilibrium by an input test is é, the unique solution
to Ae = ¢(e), which converges to 0 as A — 0. Thus, while optimism always favors

input tests, pessimism often favors output tests.

4.4 Optimal Pass-Fail Test

In this section, we derive the optimal pass-fail test for both an optimistic and a

pessimistic designer.

Optimistic Designer

We first observe that an optimistic designer cannot gain from going beyond pure
input tests. Thus, a simple test based on a single input threshold is sufficient to
attain the maximal payoff for the designer. In light of the previous results, this
result is intuitive. Input tests are efficient at providing investment incentives. An
optimistic designer is not concerned with the existence of adverse equilibria. Thus,
input tests are the ideal tool for optimistic designers. Nevertheless, it is worth noting
that such an optimal test does not directly involve any testing of output, that is, the

outcome that the designer and the market care about.

Theorem 1. The optimal pass-fail test for an optimistic designer is T = Ile >
€°], where €° = arg;n[@)g 2(1 — F(\(€))), with \(€) defined by éf;\A(E)AdF()\) =

ecle,e

c(€). In the designer-preferred PBE following this test, all agents above type \(€)
pass the test by investing the threshold input and the equilibrium payment satisfies
Were (1, T%) = E[A | A > A(2°)] = ¢(e).

In addition, the test T° features an rPBE in which all agents fail the test.

Intuitively, in the optimistic designer scenario, equilibrium selection eliminates

the need to test output in order to secure favorable market beliefs and thus favorable
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payoffs for passing agents. The designer therefore prefers a pure input test, which
provides the strongest investment incentives across all types by preventing high types
from coasting on their talent. In particular, following the same steps as in Section
4.3, we can show that an optimistic designer always benefits from switching from
an arbitrary test T to a pure input test, which requires a passing input equal to
that exerted by the lowest type passing type in under T in the designer’s preferred

equilibrium.

Pessimistic Designer

In stark contrast to the optimistic case, a pure input test is never optimal for a
pessimistic designer. Recall from Section 4.2 that the pessimistic designer’s best
input test is T? = I[e > €], where é is implicitly defined from the equation \é =
c(é). In the rPBE induced by T?, all agents choose input level &, the market offers
the passing payment W (1,7) = 7 := E[)N¢, and the designer’s payoff is 7. We
argue that a pessimistic designer can obtain a higher rPBE payoff by combining the
relative strengths of the two testing variables. By adopting an L-test—that is, a
test that combines one input and one output threshold and requires agents to meet
both thresholds to pass the test—she protects herself against adversarial equilibria
using the output threshold, but provides strong investment incentives using the input
threshold.

Consider, for instance, T"(e,m) := I[e > ¢é] - I[x > 7], where 7 is the unique
solution to ¢(7/\) = 7. Passing the test 7" requires more output than passing T' (as
7 is constructed through the lowest types’ productivity). Thus, the induced rPBE
E™ must yield a higher passing payment as well, W (1,7") > W (1,T) = #. Moreover,
by construction of 7, even the lowest type A prefers passing 7" to failing whenever
W(1,T") > #. Thus, ET necessarily features all agents passing 7" and there does
not exist a worse equilibrium for the principal. Finally, because c¢(¢) = Aé < E[\]é =
7 = c(7/A), the input required from the lowest type to reach the output threshold
7 is strictly higher than é. Consequently, even a pessimistic designer benefits from

switching from 7T to T": T" induces weakly higher output from all types and strictly
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higher output from lower types.

Also the optimal pure-output test 7° = I[x > 7| from Proposition 1 can be
improved upon through an L-test. Let X denote the lowest passing type in the rPBE
induced by 7, and consider T"(e,7) = I[e > 7/\] - I[r > 7. Since the passing wage
under 7" is at least T = ¢(7/ 5\), all types A > X pass in the induced rPBE. Moreover,
because 7/\ decreases in A, the new input threshold binds for all types above 5\,
requiring them to raise their input from e, = 7/A under T to e = T/A > T/\.
Hence, switching to T strictly benefits the designer.

In general, however, even L-tests are suboptimal. Our main result provides the
characterization of the optimal pass-fail test. In particular, we show that the optimal
test is a step-test T'(e,w) = I[m > 7| +1[e > €| l[fy > m > 7], i.e., a test combining
one input threshold e and two output thresholds 7y > 7, > 0, where agents pass
either by meeting the high output bar 7y or by meeting the lower output standard
71, while investing at least e.

The optimal pass-fail test highlights how a pessimistic designer optimally com-
bines the two strengths of input and output tests. The output components are
devised to effectively prevent the existence of adverse equilibria. The input thresh-
old then provides maximal incentives for input investments within the limits that

the output components allow.

Theorem 2. The optimal pass—fail test for a pessimistic designer is a step-test
T(e,m)=1r >7g|+1e>¢l[7ty > > 7L,

that induces all agents with A > Ar € [\, \) to pass in the induced rPBE. Moreover,
the optimal thresholds satisfy N\e > Ty > 7, and, in the induced rPBE, yield S\Teg’; =

7,1
cleg)-

To illustrate why a step-test is optimal, we proceed in several steps. Assume that
test T is optimal and let A, denote the lowest passing type in the induced rPBE.
First, observe that requiring an output threshold 7, = :\Te;;l cannot reduce the
designer’s rPBE payoff. Hence, we can assume that the optimal test 7" imposes this
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minimal output threshold and that, in the induced rPBE, the lowest passing type
attains exactly this output level. This threshold places a lower bound on market
beliefs, and thus on the (on- or off-path) passing payment, in particular, we obtain
W(T,1) > mr. Note that introducing this threshold makes it weakly harder for types
below the cutoff to pass, and hence, does not affect participation. Types above the
cutoff continue passing the test in the same way. Therefore, the new output threshold
has the sole purpose of disciplining the most pessimistic market beliefs if passing the
test is an off-path event. Thus, a test with the additional output threshold 7, is less
prone to adverse equilibria than any other test that induces the same output level

from the cutoff type A\,. We summarize this insight in the following lemma.

Lemma 3. Consider two pass-fail tests, T and T = TI[x > 7], and denote by eT
and ET their respective rPBEs. If wr, is the output produced by the lowest passing

type /N\f mn ET, then the designer’s payoff and the agents’ choices and payments are

identical in ET and ET .

Second, consider an arbitrary test 7" imposing the same minimal output require-
ment 7, as the test T. If T requires from the high type a passing input level e?’l
such that the associated cost exceeds the minimum output threshold (that is, if
c(ei\f/’l) > ), then 7" features an all-agents-fail rPBE sustained by the most pes-
simistic off-path passing payment W (T, 1) = my. Thus, such a test T is suboptimal.

Suppose instead that c(e;’l) < 7, implying that the highest type is always will-
ing to pass the test, even under the most pessimistic market belief. By Lemma 1,
the required passing input is decreasing in agents’ productivity, and therefore, the
payoffs are increasing in the agents’ productivity as well. Therefore, the fact that
the highest type’s costs are below the input threshold 7 implies that e?’l < e:i\F’l.
Further, recall that in any test, the underreporting incentive constraint requires that
the highest type attains an output level of at least 7y, implying that eg’l > 7L/
However, the designer can improve on the test 7" by raising the implied required
passing investment of the highest type marginally while still ensuring incentive com-

patibility.” With this modified test, the designer realizes an inframarginal gain, due

9To see that this is feasible, note that, due to incentive compatibility, there exists a type A’ = A—¢
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to higher required inputs to pass the test, and a marginal gain, due to a positive
wage response to the higher investments of high types.

It follows from this reasoning that that an optimal pass—fail test T must be
devised such that the input investment required by the highest type, eg’l, comes at
a cost equal to the lower input threshold, which coincides with the output produced
by the cutoff type.!?

Lemma 4. Any optimal pass-fail test T for a pessimistic designer must satisfy

(4) c(e%’l) = )\Te:Z\F’Tl.

The previous to lemmata pin down two constraints that hold in an optimal pass-
fail test for the pessimistic designer; that is, (i) there is an output threshold 77, equal
to the output attained by the indifferent agent, and (ii) the input required from the
highest type is such that its associated cost is equal to the output threshold 7.

To find the set of candidate optimal tests, it suffices to pick an input threshold
7, and identify the associated input required from the highest type. Then, the only
properties of the optimal test to be identified is which input is to be required by
the types below the highest. Consider a test 7" with threshold 7, and a candidate
indifferent type A. Then, indifference requires that the agents with types \ € (S\,X)

choose inputs such that the indifference condition holds:

fZ\X >‘6§71dF()‘) <e§’1> '

) —FQ)

Note that an implication of the incentive compatibility constraint in Lemma 1 for

with e%’l € (e?’l, e?’l) and c(e%"l) < 7. By introducing an input threshold at ef[;"l, the required
input of all types above A\? increases but the highest type’s cost is still below 7.
10Recall that by Definition 1, our tie-breaking rule ensures that even if the highest type is indif-

ferent between passing and failing, the highest type will pass the test.
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how the required input can vary whenever the minimum input is differentiable is

Hence, the test T" must induce a mapping from type-dependent required inputs to in-
duced outputs that is a weakly decreasing function from (ei\f’l, ’/T(e?l, A)) to (e,‘;\r’l, ).

Finally, note that for any such mapping, the designer can strictly improve her
objective unless there exists a type A* such that for all types A € (A*, X), the induced
output is equal to the highest type’s output, that is, 7T<€Z:’1, ) = W(@%’l,X), and for
all A € [\, \¥], the induced input is equal to the input of the indifferent type, that

is, ef’l = eg’l. When this condition does not hold, the designer can change the test

to such a step-test 77 by introducing an input threshold € = e:i\F’l and an output
threshold 7y = W(eg’l). First, by construction, this test will be robust in that it
does not feature an equilibrium in which all agents fail. Second, a strictly positive
measure of agents above the indifferent type A will be required a strictly higher input
to pass the test. These agents are willing to invest the additional input as long as
the indifferent type has an incentive to pass the test, as their payoff is at least as
high as the indifferent type’s payoff. Third, the indifferent type now has a strict
incentive to pass the test, as the higher types invest more, putting upward pressure
on the market payment. Finally, the designer has an additional marginal gain from
new agents passing this modified test.

Thus, the only candidate for an optimal pass-fail test remains the step-test pro-
posed in Theorem 2 and illustrated in Figure 4. While capturing the same logic, the
formal proof of Theorem 2 in the appendix takes a different approach. It recasts the
designer’s optimal test design problem as an optimal control problem. This approach
has the advantage of being more easily adaptable to general production technologies,

which we exploit in Section 5.2.
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Figure 4: The optimal test for a pessimistic designer is a step-test. The purple
segments represent the input-output combinations generated by the passing agents in
the induced rPBE.

5 Extensions

In this final section, we show that our main insights are robust to different gen-
eralizations of our baseline model. First, we show that even when going beyond
simple pass-fail tests, the optimal test design must rely on combinations of input
and output-testing components. Second, we show that the characterization of opti-
mal pass-fail tests in Theorem 2 holds for more general production functions than

the one we have studied so far.
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5.1 Beyond Pass-Fail Testing

Our analysis so far has focused on pass—fail tests. While binary ratings capture
many relevant applications, it is natural to ask how richer testing technologies might
affect the designer’s optimal testing approach. In this section, we show that the main
trade-offs identified for binary tests extend to arbitrary deterministic rating schemes.

A multi-rating test is a right-continuous function 7' : RZ — G, mapping any
reported input-output pair (e?,7%) € R2 to a rating g = T'(e?,7%) € G, where G
is a (possibly infinite) set of ratings. Such a test can be coarse (e.g., pass—fail) or
arbitrarily fine (e.g., T'(e, ) = e or T'(e,w) = m). In this context, a test T is called a
pure-input test if T'(e, ) is independent of 7, a pure-output test if it is independent
of e, and a composite test otherwise.

The main result of this section is twofold, mirroring our findings in the pass—
fail case. If the designer can coordinate the market and agents on her preferred
equilibrium, a pure-input test suffices to induce the highest total output. If instead
the designer seeks to maximize her payoff subject to robustness concerns, then the
optimal test must combine input and output components to discipline market beliefs

while preventing higher types from excessively coasting on their talent.

Theorem 3.

1. The optimal multi-rating test for an optimistic designer is a pure-input test.

2. The optimal multi-rating test for a pessimistic designer is a composite test,

necessarily depending on both input- and output-components.

5.2 General Production Technology

In line with the human capital accumulation and certification literature, our analysis
has so far considered a multiplicative technology (e, A\) = Ae. This section shows
that the main insights from Theorem 2 are significantly more general, extending to
all settings where input is productive (7(\, e) increasing in e) and where input and
productivity type act as weak complements (7 weakly supermodular in (e, A)). These

mild conditions cover, among others, the additive specification m(e, \) = A + e.
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Theorem 4. Suppose output is generated by a production function w(e, \) that is

increasing in e and weakly supermodular in (e, \).

1. The optimal pass—fail test for an optimistic designer is a pure input test,

T(e,m)=1I[e > €.

2. The optimal pass—fail test for a pessimistic designer is a step test,

T(e,ﬂ') = ]I[’H' > ﬁH] +]I[€ > E]H[ﬁ[{ > > ﬁL].

This generalization highlights that our results are not an artifact of the mul-
tiplicative formulation in our baseline model, but instead reflect deeper forces in
environments where inputs and types interact more flexibly. The optimistic designer
continues to favor pure input tests because equilibrium selection disciplines market
beliefs, making output testing redundant. By contrast, the pessimistic designer relies
on output thresholds to discipline beliefs and employs step tests to curb coasting on

talent without sacrificing robustness.

6 Conclusion

In this paper, we highlight that the efficacy of a certification system depends as much
on what is tested as it does on how certification is assigned. In particular, the choice
between testing inputs and outputs is not merely a technical decision about what the
market cares about, but a strategic choice that fundamentally alters agents’ incen-
tives and equilibrium outcomes. While pure output tests effectively anchor market
beliefs, they suffer from a “coasting” inefficiency, allowing high-productivity agents
to pass with minimal input investments. Conversely, pure input tests maximize
incentive provision by standardizing input requirements, yet they remain fragile to
pessimistic market expectations. Our analysis resolves this tension by deriving the

optimal pass-fail certification. By conditioning certification on a specific combina-
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tion of input and output thresholds, a designer can simultaneously secure robustness
against adverse equilibria and provide strong incentives for input investments.
These findings open various avenues for future research. One promising direction
is to study the commercialization of certification when the testing variable can be
designed flexibly. Our current framework assumes a designer maximizing aggregate
output, yet many real-world certifiers, from credit rating agencies to software compli-
ance auditors, are profit-maximizing entities selling certification as a product. This
shift in objective introduces a pricing dimension that may interact complexly with
the test design and the optimal testing variable. For example, high-productivity
agents might be willing to pay a premium for “output-only” tracks that allow them
to leverage their talent, reveal high output levels to the market, while avoiding costly

input monitoring.
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A  Omitted Proofs

A.1 Proof of Lemma 2

Proof. Note that in any PBE £ following an input test with € € [¢, ¢] it must hold
that Wer(T,1) = c¢(€). Moreover, the market belief must be consistent with the
agents’ behavior, implying that for a passing set of agents Agr C [\, A], we must
have Wer (T, 1) = E[XA | A € Agr]. Denote the set of agents passing the test in a
cutoff equilibrium by C' = [X,X] and the set of agents passing the test in any other

equilibrium by N C [A, A]. Both being equilibria following the same input test with

implies that they must induce the same expected productivity of passing agents
(6) N =EXN AXeC]=E[N|XeEN]

We want to show that the designer prefers the set C' of passing agents over any other

set N, which is equivalent to

(1) (AMHME/AMU)

N

By the definition of conditional expectations combined with C' and N inducing the

same conditional expectation, showing this inequality is equivalent to showing that

(8) mm:lwmzﬁww:mm,

that is, that the amount of passing agents in the cutoff equilibrium is higher than in
any other equilibrium.

Denote by A :=C\ N and B := N \ C. Then, we obtain that showing P(C) >
P(N) is equivalent to showing P(A) > P(B)."* Note that \* > ), as the density has
full support and C' = [S\,X]. By C' and N having the same conditional expectation,

HThis follows as AU (CNN)=C and BU(CNN)=N.
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we obtain the following sequence of manipulations

(9) /C (A= \)dF(\) = / (A — \)dF(\)

N

(10) /C \N()\ — NYAF()) = /C \N@ — AYAF(N)
(11) /A(/\ CAYAE(N) = / (A — XVAF(N).

B
Observe that A C C = [5\,_] and B C C° = [}, 5\) Thus, for all A € A, we have
A > X and for all A\ € B we have A < X\. Denote A := X\ — A\¢ < 0, so that on A,
A=X>A—=X=A and on B, A — A < A\ — A\¢ = A. These imply together that

(12) AP(A) < /

(A — A)dF()) = / (A — A)dF()) < AP(B).

B

As A <0, we obtain P(A) > P(B) proving the result. O

A.2 Proof of Theorems 1, 2 and 4

Note that Theorems 1 and 2 are special cases of Theorem 4. Theorem 1 is the
special case with production function 7(e, \) = e- A and without the constraint that
no equilibrium exists in which all agents fail, condition (rPBE) below. Theorem 2 is
just Theorem 4 with the production function 7(e, \) = e - A. As we prove all results
using the same proof technique, leveraging optimal control methods, we prove them
jointly.

To simplify notation, we omit the test- and rating-dependence of the minimum

g

required effort ef’ in the following and write e(\) instead. The following lemma is

the immediate analogue of Lemma 3 under the general production function.

Lemma 5. Given any optimal pass-fail test T with an associated rPBE ET, there
exists an outcome equivalent pass-fail test T with associated rPBE ET that has an

output threshold ™ = 7'('(6(5\), 5\), where \ is the marginal type in ET.

Next, we state the incentive compatibility condition for the general production
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function, analogous to Lemma 1.

Lemma 6. Any incentive compatible test must be such that the minimal required
input of type X e(\) is continuous and, at each point of differentiability, it satisfies

- me))
é() € [-2LQN o).

Proof. The result obtains directly by contradiction using the underreporting property
whenever e(\) were not continuous or the slope outside the bounds stated in the

lemma, as in Lemma 1. O

Optimization Problem We obtain the following optimization problem for the

designer.!?

(OBJ) e A S () NSO dA

(IC) s.t.YAe [N é(N) e [—%o}
(PC) /;w(e(x), A)lf(—;z:\) d\ — c(e(N)) >0

(rPBE) m(e(N\), X) — c(e(N)) > 0.

Note that constraint (PC) ensures participation of the marginal type , and (rPBE)
ensures that there is no equilibrium in which every agent fails.
In the next step, we rewrite this optimization problem as an optimal control

problem with control u(A) and state variables e(\), w(A) that evolve according to

- g f(0) )
WX = (ﬂe(x),x)— /A mo(e(6), 0)— aw) oY= F OO

w(A) is introduced as a state variable to handle the participation constraint of the

marginal type A, which includes an integral (isoperimetric) constraint, and is the

2In the following, as we adopt an optimal control approach, derivatives should be interpreted as
right-derivatives whenever there is a kink in e(\).
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wage conditional on types A € [\, \] passing the test. Hence, w(\) represents the
equilibrium wage.

Constraint (IC) implies that we have a bounded control u(\) € [—%, 0].
The constraints (PC) and (rPBE) enter the control problem through initial- and
terminal-value conditions. We choose the initial value of the state 6(5\) as part of the
optimization problem (which gives rise to the corresponding transversality conditions

given the constraints of the problem. The Hamiltonian is

H =po-m(e(N),N)f(A) + pe(Nu(N)

(V) (w<e<x>,A> - (0,05

1O i) IO
)= FO) ) FOO = F(Y)

where pg € {0, 1} ensures the well-definedness of the maximum principle and p, and
pw are the co-states of the state variables e and w. (PC) and (rPBE) imply the

following boundary constraints

The necessary conditions for optimality follow from Pontryagin’s maximum prin-
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ciple

=0, if p.(A) >0
u(A) e [-2ENN o], it p(y) =0
= — Tl if p.(\) <0
) = =l NI (0 + B )
Pe(A) = 3pe(e(A), X) = Ymce(e(N)
Pe(A) = —Ypce(e(N))
Puw(A) =0
Pu(A) = Y
w(X) = m(e(A), V)

Proof of Theorem 1 Note that we can recover the case without the robustness

constraint (rPBE), by setting 4, = 0. Thus, we immediately obtain p.(A) = 0 and
Pe(N) = —ymce(e(N). As v, > 0, and because, whenever we can find a feasible
path e(\), we obtain pg = 1, and hence, p.(\) < 0, implying that p.(\) > 0 for all
A€ [S\,X), and hence u(A) = 0. By appropriately choosing A and 6(5\), a feasible

solution exists and the optimal test is a pure input test.

Proof of Theorems 2 and 4 Note that it follows from p,,(\) = 0 that p,(\) =
Ym > 0. As po € {0,1}, we obtain immediately that p.(\) < 0. As for any A for
which we can find a function e(\) such that all constraints are met, we obtain that
po = 1, and p.(A) < 0. Hence, the co-state of e(\) is strictly decreasing throughout.

Note that p.(\) < 0 as 5, > 0. Hence, there are only three candidate test structures

(since pe(A) can cross zero at most once and if it does, it does so from above):
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(i) An L-test; if 7, = 0, as then p.(A) = 0, which combined with the optimally
chosen singular control and p.(\) < 0 implies that u(\) = 0 for all A € [, A]),
and we set (weakly) optimally 7(e()), A) = 7w(e(\), \) for all A < \.

(ii) A pure output test; if 7, > 0 and 7, > yp%, as then p.(\) < 0 and

Pe(A) < 0, which together with p.(A) < 0 implies that p.(\) < 0 for all X €

Y ) — _m(eM)N)
[A, A], and hence, u(\) = — ey forall A.

7e(e(M),\) 3
R then p.(A) < 0 and

pe(X) > 0, which together with pe(\) < 0 implies that there is a A € (X, ) such
that p.(A) > 0, and thus, u(X) = 0 for all A € [A,A), and p.(\) < 0, and thus,

— _ ™M) ND)
u(A) = — ey forall A e (A, Al

(iii) The staircase test; if 7, > 0 and v, < 7,

Next, note that both constraints, (PC') and (rPBE) must be binding, implying
that v, > 0 and ~,, > 0. Suppose the robustness constraint is not binding, implying

that 7, = 0 and 7(e(A), A) > c(e(A)). In this case, we must be in (i), that is, have the

L-test structure. However, if this were the case, w(A) > ¢(e(\)) and the constraint
on the marginal type is slack, implying ~,, = 0. This implies that pe(S\) =0=pc(N),
which contradicts p.(A) < 0.

Further, suppose that the robustness constraint (rPBFE) is binding, implying

v, > 0 and f(e(X),A) = c(e())), but that the constraint on the marginal type (PC)

is slack, implying that ~,, = 0 and w()\) > ¢(e(A)). In this case, we must already
feature a staircase test (see conditions for item (iii)). However, we can additionally
conclude that it is suboptimal not to have the marginal type’s participation constraint
binding. By raising e()\) marginally, no constraints are violated while the objective
must have increased, contradicting optimality.

Hence, we conclude that v, > 0 and ~,, > 0 with both constraints binding. What

remains to be shown is that it is never optimal to feature a pure output test (item (ii)).

Note that in a pure output test 7w(e()\), ) = m(e(A), A) while e(\) < e()\), implying
that if w(X\) —c(e(\)) = 0, then w(e(A), \) —c(e(X)) > 0, as w(X) = 7(e(N), \). Thus,
both constraints cannot be binding simultaneously in a pure output test. It follows

that the optimal test must be a staircase test as in item (iii).
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Note that with an appropriate choice of A and e()\) a feasible path e()\) always
exists. Thus, in this case, we obtain py = 1 and the optimal test for a pessimistic
designer obtains as a step case.

The necessary conditions are sufficient to identify the optimal solution in our case,
as have existence of an optimal solution for given initial conditions, and moreover,

we obtain a unique solution to the necessary conditions implied by p.(A) < 0.

A.3 Proof of Theorem 3

Optimistic Designer. Suppose the designer can coordinate the agents and the
market on her preferred equilibrium in the subgame following any test 7. Fix an
arbitrary test 7' : RY — G (with a possibly infinite grade set G), and let £ denote
the designer—preferred equilibrium in the subgame that follows it.

For every grade g € G attained in £7, denote by AT := {\ : T(ef, Aef) = g}
the set of agents attaining that grade, by )\gT ‘= min A;‘]F the lowest type achieving
that grade, and by e; = eng the maximal input invested in £ to attain g. As
higher types are more productive, ef is weakly decreasing in A, and e] > e} for all
A€ AZ.B

For any grade g with AT # (), define

(13 m(g,¢) = E [AA € O7(g)] e — cle).
where OT(g) := U AgT, is the set of all types that attain grades associated with

g’EG:eg,:eg

the same maximal effort as grade g in the equilibrium 7. Moreover, let

14 T.— inf m?(g,el).
19 9EG:0T (9)#0 (9:¢)

B

Since £7 is an equilibrium and agents can always obtain a zero outside option by

13To see this, suppose otherwise. Then, there exists a type A € Ag with A > )\g and e{ > e?;.
However, type A can do better by choosing the lower input eg and reporting output )\geg, which
is strictly lower than the actual output and thus feasible. With this deviation, A obtains the same

grade at a lower cost.
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not exerting effort, it follows that m? > 0.1

As c(e) is strictly convex and satisfies ¢(0) = 0, ¢/(0) = 0, m”(g,e) is strictly
concave in e. Thus, the equation m”(g,e) = m? admits two solutions, e%,g < e’T7g,
with the property that e , > eg, as m’ (g, eg) > m?. For each g attained in £7, we
use the largest solution €7, , of m”(g,e) = m" to construct an improvement for the
designer.

Consider the test'®

e ife=¢e. forgeG:O7T 0
(15) T’(@,W) — T,g T.g g (9) #
0 otherwise.

In this test, for each g attained in T, every type A € OT(g) is willing to invest
el = eiﬂg if the composition of OT(g) remains unchanged, as, by construction,
achieving any grade g’ = ep,, costs c(e’T’g) to every type and delivers an expected

payoff
(16) ml =E [)\ | A e OT(g)] elTﬁg —c (elTﬁg) > 0.

Thus, all agents are indifferent among all input levels e such that e = e, ,—that is,
indifferent among all available grades. Note that if £7 features some agents achieving
a failing grade with e = 0, then m” = 0. It follows that there exists an equilibrium
E™ in the subgame following 7" such that the types A € O7(g) achieve the grades
associated with e7, .. Note that in the equilibrium ET | for any attained grade ¢ and
any A € O”(g), we have e/, , > el > €. Therefore, this tests improves the designer’s

payoft:

(17) A ' Ael'"dF(\) > A ' XeldF(N),

Tndeed, in T, the lowest type in OT'(g) invests input eg and obtains an expected payoff lower
than m” (g,el) (as el > €] for all X € AL). Thus m”(g,el) > m™ > 0 for all g with AT # 0.

151f there are more than one grade with the same er,g in ET we pick merge these into a single
grade.
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with a strict inequality whenever er, > egT for some grade g. Consequently, the
designer weakly improves by switching to the pure-input test 7”, proving the first
part of Theorem 3.

Pessimistic Designer To prove the Pessimistic Designer result, we proceed in

several steps.

Step 0: Pure—input tests are never optimal. We first show that, among pure-
input tests—that is, tests satisfying T'(e, ) = T'(e, n’) for all m, 7’—the best possible
outcome is achieved by the pass/fail test T"(e,m) = I(e > e*), where e* solves
Ae* = c¢(e*). Indeed, while 7" induces only equilibria in which all agent types choose
e*, any other pure-input test admits an equilibrium where all types choose e, < e*.
To see this, note that if there were some grade that requires an input level e, > e*,
there always exists an off-path belief such that only the lowest type A achieves this
grade. Under this off-path belief, there exists an equilibrium in which all types invest
no more than e*. Thus, the optimal pure input test under designer-worst equilibrium
selection is the pass/fail input test with input threshold e*. Since Theorem 2 implies
that 7" is strictly dominated by some input-output test, no pure-input test can be

optimal.

Step 1: Pure—output tests are never optimal. Consider any pure output test
T—that is, a test such that T'(e,7) = T'(¢/, ) for all e,e’ € R,. Note that we can
represent any such test as T'(e,m) = wl(nm € Ilr), where IIr is the set of output
reports that 7" allows to reveal; that is, each of these output levels is associated with
a different grade in the test. The following properties hold for any equilibrium &7
following T

a If T(el, Nel) = m, then (i) el = m /), and (ii) T(el,, Nel,) > m for all X > \;
that is, higher types attain weakly higher output levels in equilibrium. Indeed,
since the production function is m = Ae, reaching higher output levels is more

costly, but less so for higher types. To see this, note that the difference in
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payoffs for two grades associated with output = > 7’ for any type A is

/

(18) a0 =(r-<(5)) - (v=<(5)):

which increases in A due to the convexity of the cost function

/ /

e B (3) 5o () 5o

b For each type A € [\, )], denote by ey" the input that maximizes agent \’s
payoff if the market were to observe her input-output combination directly, i.e.,
ey = argmax.>o{Ae — c(e)}. If the corresponding output level 75* = Xe}*
is such that m}* € Ilp, then exerting e}* is strictly dominant for A in the

subgame following 7". Note that both e}* and 7}* are strictly increasing and

continuous in A € [\, A].

c U T(ek,, Nek)) =T(el,, N'el,) =m for X < X, then (i) T(el, Nel) = m, for all
A€ [N, \'] (adirect consequence of (a)), and (ii) there cannot be m < m < my
such that [y, m] C . To see this, note m — ¢ (%) is strictly concave in 7w with
a maximum at 7y*, and 7} > 7}/. Hence, types A" and A" cannot both prefer
the same 7, over all output levels in [m, 75] if those output level could also be

revealed, [my, mo] C II7p.

d If £ is an optimal test, at least two grades associated with two different output
levels must be attained in £7. This observation follows from the suboptimality

of a pure output pass/fail test, as shown in theorem 2.

Endowed with these properties, we can prove that a pure output test 7' can never

be optimal in the Pessimistic Designer case.

STEP 1.0 Consider the unique equilibrium £7 following T, where uniqueness follows from
the test being a pure output test. Denote by u, : II = R the function mapping
any hypothetical grade ¢ in a pure output test associated with the output level
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STEP 1.1

7 to the corresponding payoff for type A of achieving that grade:

™

uy(m):=m—c <X> :

Moreover, given any grade g associated with an output level 7wy achieved in

ET, denote by A}, and A\7%® the lowest and highest types, respectively, that

achieve that grade in £ i.e., for which uy(7g) > uy(7) for all 7 € 1. Finally,

for every A and 7 such that ul(7) > 0 and 7 > 7}*, denote by 7\ # 7 the
low

output level for which uf () = ul (7{*). Note that strict convexity of ¢ implies

the following:

— mlov exists, is unique, and increases in \;

_ low *ok .
USY <7T)\ < T;

— ul (7)) > ul(7) for all 7’ € (7lw,m), and ul(7') < ul(xw) for all =’ €

Ry \ [xlow, 7.

If output test T is optimal, there exists N\, < X such that in ET the output

attained by type X, \el is strictly increasing and continuous in X € [\, A].

Strict monotonicity. The fact that it is weakly increasing is a direct conse-
quence of property (a) above. To prove strict monotonicity, suppose, toward a
contradiction, that there exists \; < A such that /\lefl = Xeg := 7. Then:

(i) m> my". Indeed, suppose toward a contradiction that 7 < 7{*, and denote
by A4 < A the agent type such that 7 = my,- Then, the designer could

profitably deviate to an alternative test that reveals output levels above

T
T ifr>7
T'(e,m) :=
T(e,m) otherwise.
Indeed, for any type A both the cost of attaining a grade associated with
m; € Il such that 7, < 7, ¢ (%), and the associated wage W, = m under
T’, coincide with those under T'. Thus, no agent reduces her equilibrium
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input under test 7" relative to 7. Moreover, by (b), each A € [A4, A] that

was attaining 7 with input T under 7" optimally invests % under 7.
Because 3" > my* for all A € (A A, A], the modified test T" generates a

gain for the designer equal to

>\
/ (my* — ) dF(X\) > 0,
Aa

contradicting the optimality of 7.

(ii) (7w, @) NIy = 0; ie., no output level 7 € (7{",7) is associated with

a grade in test T'. Since 7 > 7" > m}7 and, by assumption, [ obtains 7
in &, 7 is well defined, and (7Y, 7) NIy = @: otherwise A; would

optimally deviate to a grade associated with such an output level.

However, it follows from (i) and (ii) that the designer can profitably deviate to

an alternative test 7" (a contradiction). Indeed, denote by mp < ﬁf\‘;w < 7 the

dev

second highest grade in Iz that is attained in £7. Moreover, define by €4 the
input such that T — c(e§) = uy(7p). Define the test T”

T iwaﬁandeZe%e”

T'(e,m) =< T(e,n) ifr<nr

T(e,0) otherwise,

which features an L-threshold at the top that requires an output level of at
dev
A

test T" is identical to T, and for all output levels above 7 together with input

least T and an input level of at least e$°’. For all output levels below 7 the

levels below eg\l“’

a payoff of zero.

, the test assigns the lowest grade from test 7', which delivers

For any type A, attaining output m < 7, with 7, € Ily, has the same cost
c (%) and the same benefit 7; under 7" and 7”. Thus, no agent obtaining a

grade m; < 7 selects a lower input under 7" than under 7.
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Moreover, all types achieving grade 7 in & will still prefer attaining the grade
labeled 7 over any grade associated with output levels 7, < 7 under 7”. To

see this, note that, by construction of e%e”, the highest type A will not benefit
from deviating to lower output levels. As e§* decreases in A and 75 < "

(by (ii)), all other types A € [A;, ) will also attain the grade associated with

dev

output level 7 and input threshold e£".

Finally, since g < Wé\iw < WZX"“’, we know that e%¥ > Z. Thus, there exists

Y X
N € (A, \) such that each agent A € [\, \] chooses higher input under 7" than

under 7'. This results in a gain for the designer of at least

/ ' (Aefer — 7) dF(X) > 0,

/

contradicting the optimality of 7. Thus, el is strictly increasing in A over

the interval [A\;, A].

Continuity. If el is strictly increasing in A € [\;, A], it must also be left-
continuous on A € (\;, \]. Suppose not. Then there exists X' € ()\;, A] such
that lim, ,,,- el < Nel,. But, since el is strictly increasing on A € [\, A],
there cannot be a mass of types attaining grade 7’ = Nel,. By continuity of
¢ and point (a) above, N must then be indifferent between attaining Aei, and
limy - el (if lim, - Ael € TI7). Given the strict concavity of m — ¢(m/))
in 7, we have lim,_,, Xel = (7)/%" < 7%
N € (N, \) such that el < 73* for all A € (N, \). This yields a contradiction
as all types in (A, X') would prefer a grade closer to limy_,y- Ael € Ilp, all

types in (N, \'):

< 7', implying the existence of

— if limy_,x—- Ael € TIp, all types in (N, \) would pool at this grade, vio-

lating strict monotonicity;

— if limy_,y- Ael ¢ Ilp, then types in (A, )\) would have no best reply,

contradicting the existence of the candidate equilibrium.

Thus, el is left-continuous in A over (\;, \]. An analogous argument shows
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STEP 1.2

STEP 1.3

STEP 1.4

right-continuity over the same range

For any A, € [AA] such that \el is strictly increasing and continuous on
[\, Al, we have el = w5 for all X € [Ap, A].

By step (1.1), we know that there exists A, < A such that Ael is strictly
increasing and continuous on A € [Ar, A]. Using the notation 7} := Xel, we

have that 7§ < 7l and [r} 7] C TIp.

We first show that m = 7%*. Indeed, if 71 < 73*, there would exist A < A

such that all A € [X , X] would profitably deviate to attain 7Z; and if W% > i,

)\ )
agent A would profitably deviate to some 7 € [x} 7T ).

Combining [} ,7T] € Il with 7T = 7%* and an analogous optimality reason-
ing, we obtain Ael = 73" for all A € (Az, Al.

kK

Finally, note that by continuity of 73* and strictly increasing Aei on [)\L,ﬂ,

we must also have that 77 = 7.
AL AL

For any Ap € [\, X] such that el is strictly increasing and continuous on

BN ; T _ T k%
(AL, Al, we have lim, _,,, - Aey = Arey, = 73",

By Step 1.2, el = 73* for all X € [AL,X}. Suppose, toward a contradiction,
lim, ,,,- Aef < 3. Then there must exist \” € (A, Ar) such that [73*, 73*) N
7 = () and Aes < 73* for all A € (N, \). However, since u} () is continuous
in A and, for every \, strictly increasing over [0, 7}*], this implies that there
exists A" € [\, AL) such that all A € [\, A1) optimally select w3 following

. s g : T *ok
T’; a contradiction to limy_,, - Aey < 77 .

For any A\, € [\ )| such that Nel s strictly increasing and continuous on

[\, A], we have that there is no N < Ap, such that N'et, = )\LefL =T\, -

Suppose otherwise, and denote by \” the lowest type for whom \’el, = 7y, .

*
L

(ma,)low < 7y, is well defined, and ((my, )5, ma, )NIIp = 0; otherwise, A" could

Then el = m,, for all A € [\, \r]. Moreover, because 7y, = 7}* > 7w},

profitably deviate. However, this implies that the designer could profitably

deviate to an alternative test.

43



If Ael =0 for all A < )’ then it is immediate to see that it is profitable, for
the designer, to deviate to T"(e, 7) := T'(e, m)I(e > el,).

If instead Aej > 0 for some A < X, let 75 := min{m € Iy : 7 < 7}*} <
(ma, )% denote the highest attainable grade strictly below 73*. For all A €
[\, L], define (WB)I;gh as the unique output level 7 > 7{* that makes type A
indifferent between attaining 75 and (75)3%", that is, (15)2%" — ¢ (ﬁ) =
ux(mg). Finally, for all X € [\, \r], let AB denote the unique type such that
i, = (o).

Note that (7 )Tgh is strictly increasing in A and, since A” must be indifferent

between 7} and 7p, we must have (WB)if;‘]h = m; . Thus €]} is also strictly
A
increasing in A € [\, Ar], with e/\B = e3*. Combined with the fact that e}

is strictly decreasing in A € [\, A L] with ef = €37, this implies there exist a
unique \ € [\, AL) such that elh = e Denoting \ := )\)\, we can show that
the designer could profitably deviate to an alternative test

T(e,m) ifm<ay, orm>ms”

T'(e,7) := < 7 if me [77/\ ,7T**:| and e > e}’

T(e,0) otherwise

Indeed, for any type A, the payoff from attaining any grade m; € I\ [W)\L, ;*}
under 7" is the same as under 7". Thus no agent obtaining grade 7 < 7}* under
T will invest lower input under 7”. Moreover, all types A < A who attain
grade my* in & will still prefer, under 7", to achieve 73* rather than any
T < 3o their payoff from 737 is (weakly) higher under 7" than under T (as,
by construction, e} = ﬂzz > eT = e}"). Additionally, since (by construction) A
is indifferent between 5 *and 7p, all types A € [)\ )\] prefer mi" to any T < 7p.

Thus, under 7", they Wlll either aim for 7rA or my*, both of Wthh now require

them to invest higher input (as el = % < 65\ = ¢} for all A € A A)—
benefiting the designer. Finally, all agents who attain 7 > Y under €7 will
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continue to choose 7 under 7", since 73; still yields a return below m$*.

Step 1.5 Taken together, Steps 1.0-1.4 imply that if a pure output test is optimal, then
T(m,e) =l (7 € [x}7, W}*])is optimal. The last step is thus to show that this
test could be improved upon. In particular, it is straightforward to see that
the designer would obtain a strictly higher payoff by deviating to T'(w, e) =

i (7T € [z, 7T§*]), where 7 > 731" is the output level such that = — ¢ (X) =0.
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