
Time-varying Cost of Distancing:

Distancing Fatigue and Lockdowns

Christoph Carnehl∗ Satoshi Fukuda† Nenad Kos‡

March 15, 2024

Abstract

We study a behavioral SIR model with time-varying costs of distancing. The

two main causes of the variation in the cost of distancing we explore are distancing

fatigue and public policies. We show that for a second wave of an epidemic to

arise, a steep increase in distancing cost is necessary. Distancing fatigue cannot

increase the distancing cost sufficiently fast to create a second wave. However,

public policies that discontinuously affect the distancing cost can create a second

wave. With that in mind, we characterize the largest change in the distancing cost

(due to, for example, lifting a public policy) that will not cause a second wave.

Finally, we provide a numerical analysis of public policies under distancing fatigue

and show that a strict lockdown at the beginning of an epidemic (as, for example,

recently in China) can lead to unintended adverse consequences. Once the policy

is lifted, the disease spreads rapidly due to the accumulated distancing fatigue of

the individuals causing high prevalence levels.
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1 Introduction

During an epidemic, the health and possibly even the lives of individuals are at risk.

Each interaction with another, possibly contagious, individual leads to the possibility

of infection. As a protective measure, people tend to limit their social interactions.

Two primary factors influence individuals’ protective behavior: the probability of getting

infected and the cost associated with abstaining from social interactions. This paper

explores how fluctuations in the distancing cost shape individuals’ endogenous distancing

behavior and how this affects the dynamics of an epidemic.

The reasons for variations in distancing cost are numerous. For example, distancing

fatigue leads to a gradual increase in distancing cost as individuals deprive themselves

of social interaction. The World Health Organization Regional Office for Europe de-

fines “pandemic fatigue” as demotivation to follow recommended protective behaviors,

emerging gradually over time and affected by several emotions, experiences, and per-

ceptions as well as the cultural, social, structural, and legislative environment (WHO,

2020). Franzen and Wöhner (2021) document distancing fatigue among young adults

in Switzerland during the COVID-19 pandemic.1 On a more basic level, there is a long

line of research documenting how social groups increase the well-being of individuals

by offering safety and increased odds of survival.2 Moreover, religious festivals such as

Christmas and Holi or seasonal festivals such as Thanksgiving and the Chinese New Year

make it more difficult for people to avoid social interactions and, thus, correspond to a

sudden and short-term rise in distancing cost.3 Government policies enacted during an

epidemic effectively decrease the distancing cost. For example, closures of restaurants

and movie theaters reduce the availability of activities with individuals interacting and

thereby encourage social distancing. Conversely, the lifting of such a policy increases the

distancing cost. Hatchett et al. (2007), Bootsma and Ferguson (2007), and Caley et al.

(2008) demonstrate that relaxations in non-pharmaceutical interventions increased social

activity during the 1918 influenza pandemic. Nguyen et al. (2020) finds an increase in

1There is growing evidence that distancing fatigue reduces the effectiveness of a mitigation policy.
See, for instance, Goldstein, Yeyati, and Sartorio (2021), Joshi and Musalem (2021), Petherick et al.
(2021) and Du et al. (2022).

2See, for instance, Harlow and Zimmermann (1959), Bowlby (1969), Baumeister and Leary (1995),
and Eisenberger (2012). Matthews et al. (2016) show that after 24 hours of isolation mice search for
social interaction and dopamine neurons in mice brain show similar patterns of activation as in other
cravings.Adda et al. (2024) show that policy-induced reductions in mobility have a negative effect on
mental health.

3According to the American Automobile Association, nearly 56 million people traveled dur-
ing the 2019 Thanksgiving (https://newsroom.aaa.com/2022/11/thanksgiving-travel-ticks-up-just-shy-
of-pre-pandemic-levels/). The Chinese New Year may have been “the biggest human migration
on the planet” (https://edition.cnn.com/travel/article/lunar-new-year-travel-rush-2019/index.html), at
least until 2019.
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mobility soon after US-states reopened during the COVID-19 pandemic.

Motivated by the empirical work outlined above, we explore an SIR epidemiological

model in which myopic individuals choose how much to distance at each point in time

while the distancing cost may change over time. Distancing of myopic individuals is

studied in Dasaratha (2020), Avery (2021), Engle et al. (2021), McAdams, Song, and

Zou (2023), and Carnehl, Fukuda, and Kos (2023).4 These papers show that with a

constant cost of distancing, the prevalence is single-peaked. In this paper, we show that

for a second peak of an epidemic to arise, the cost of distancing would have to rise

extremely rapidly at some point after the first peak. We then proceed to analyze two

main applications of our general model: distancing fatigue and public policies.

In a framework with distancing fatigue, the cost of distancing increases in the dis-

counted amount of past distancing; for an axiomatization, see Baucells and Zhao (2019).

We show that even under distancing fatigue the prevalence has a single peak. After the

prevalence peaks first, the growth of fatigue slows down up to the point at which fatigue

starts decreasing. As a consequence, a second wave of the infection cannot arise from

distancing fatigue alone. This suggests that the distancing cost is also single-peaked

and that it peaks at least as late as prevalence. Yet, quantitatively, distancing fatigue

heightens peak prevalence potentially burdening the health care system.

While distancing fatigue cannot cause a second wave of an epidemic, a sharp, sudden

rise in the cost of distancing can. Public holidays and festivities (when it becomes chal-

lenging for individuals to keep social interactions low) or the termination of a mitigation

policy (when the distancing cost discretely rises) can generate such sharp increases. To

better understand the implications of these increases, we characterize a threshold dis-

tancing cost function: by how much would, at each point in time, the distancing cost

have to increase or decrease instantaneously to change the sign of the slope of prevalence.

The threshold distancing cost is particularly useful for two purposes. First, when

the prevalence is increasing, our characterization shows how much the cost of distancing

would have to fall for the prevalence to start decreasing. This information is crucial

for a policymaker weighing the harshness of non-pharmaceutical interventions in an at-

tempt to reverse the course of an epidemic. Second, when the prevalence is decreasing,

it determines the largest amount by which the distancing cost could increase without

causing a second wave, thereby providing vital information for a policymaker considering

4To the best of our knowledge, there is no analytical characterization of equilibrium distancing be-
havior in an SIR model with far-sighted individuals even when distancing costs are fixed over time.
Nevertheless, we present the results of numerical simulations with farsighted individuals that support
our main theoretical insights.
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to lift a mitigation policy. If policymakers base their decisions to relax policies solely on

current prevalence and immunity without considering the impact of distancing fatigue,

an unintended second wave may arise. Indeed, the epidemiologist Marc Lipsitch argued

in April 2020 that the second wave in the fall to be caused by seasonal changes would

lead to tighter and costlier social distancing, as he put it: “We will have a harder time

controlling coronavirus in the fall ... and we will all be very tired of social distancing and

other tactics.”5

In addition, we illustrate that our equilibrium model with a time-varying distancing

cost can be useful for other purposes. Several papers have analyzed optimal mitigation

policies in a reduced form by assuming that a planner directly controls the transmission

rate of a disease over time.6 However, they do not explicitly incorporate individuals’

endogenous responses to such policies and how these transmission rates would be im-

plemented. We show how different, time-varying transmission rates can be implemented

in an equilibrium model with endogenous distancing by controlling the distancing cost,

such as closing restaurants or restricting the occupation rate of public indoor places. This

analysis reveals that papers studying optimal mitigation should consider alternative cost

functions of transmission reduction taking prevalence into account. When the prevalence

is high, endogenous distancing already leads to a substantial reduction in the transmission

rate.

Finally, we conduct a numerical analysis, drawing parallels with the COVID-19 lock-

down in China, on the impact of the interplay between a stringent lockdown during the

initial phase of an epidemic and distancing fatigue. We find that such a lockdown can

lead to a greater total number of infections compared to a scenario without a lockdown.

The lockdown at the beginning of an epidemic postpones the spread of the infection (un-

less it eradicates it). Once it is lifted, individuals have accumulated a substantial level

of distancing fatigue. As a consequence, lifting the lockdown leads to less endogenous

protective distancing and thus more social interactions than without a prior lockdown.

Thus, the combination of distancing fatigue and the sharp rise in distancing cost once

the lockdown is lifted, can trigger a severe second wave of the epidemic causing a greater

total amount of infections.

Related Literature. To the best of our knowledge, this is the first paper to com-

prehensively study the effects of a time-varying cost of distancing in an SIR model with

behavior and establish analytical results about the dynamics of the disease. However,

5https://edhub.ama-assn.org/jn-learning/audio-player/18468053 (Last accessed: January 4, 2024).
6See the literature on the macroeconomic costs of an epidemic and the one on an optimal control of an

epidemic: among others, Gonzalez-Eiras and Niepelt (2020), Hall, Jones, and Klenow (2020), Acemoglu
et al. (2021), Alvarez, Argente, and Lippi (2021), Eichenbaum, Rebelo, and Trabandt (2021), Farboodi,
Jarosch, and Shimer (2021), Chakrabarti et al. (2022), and Kruse and Strack (2022).
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our model builds on work developed over the last century. We do our best to give credit

to these foundations and other related work.

The building blocks of the SIR model were set by the seminal work of Ross and

Hudson (1917) and Kermack and McKendrick (1927). The incorporation of preventive

behavior in such models, however, is a more recent endeavor. Reluga (2010), Fenichel

et al. (2011), Chen (2012), and Fenichel (2013) introduced social distancing into SIR

models and provided numerical analyses of equilibrium trajectories.

Models of distancing with myopic agents, are analyzed by Dasaratha (2020), Avery

(2021), Engle et al. (2021), McAdams, Song, and Zou (2023), and Carnehl, Fukuda, and

Kos (2023).7 The last two papers establish the single-peakedness of equilibrium preva-

lence. Dasaratha (2020) analyzes a model where the individuals are uncertain whether

they are infected. Avery (2021) studies the interplay between distancing behavior and

the willingness to get vaccinated. In relation to distancing fatigue, Avery (2021) models

fatigue as an increase in the cost of distancing after a certain amount of time, indepen-

dently of the previous amount of distancing. His analysis revolves around the effects of

fatigue on the adoption of vaccines. In McAdams, Song, and Zou (2023), each individual’s

distancing cost varies over time because it depends on other non-infected individuals’ dis-

tancing. Engle et al. (2021) propose a behavioral SIR model with myopic agents but with

a different meeting rate.

A strand of literature argues that behavioral SIR models without time variation cannot

fit the path of the COVID-19 pandemic. Droste and Stock (2021) document that a strong

self-protective response during the early months of the pandemic was followed by a close-

to-zero response during summer. Atkeson (2021a,b) and Atkeson et al. (2021) argue that

“pandemic fatigue,” a decline in the strength of the behavioral response, explains the

second wave of infections and deaths in the late fall and winter.8 Our contribution is to

provide a micro-founded behavioral SIR model with distancing fatigue. Our paper also

sheds light on how distancing fatigue and public policies change distancing costs and may

lead to the second wave.

In the early days of the COVID-19 pandemic in 2020, academics and policy-makers

were concerned about reopening strategies.9 Anderson et al. (2020), in discussing mitiga-

tion measures for the COVID-19 pandemic in March 2020, point out that interventions

7Rachel (2020a) and Toxvaerd (2020) analyze the model with non-myopic agents and offer two sets
of results that contradict each other. Both arguments that the behavior under analysis is equilibrium
behavior are incomplete.

8On a related point, Weitz et al. (2020) argue that incorporating fatigue in an epidemiological model
can explain multiple waves of infections.

9See, for instance, Baqaee et al. (2020) for an economic analysis.
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that reduce transmission greatly cause the risk of a resurgence when interventions are

lifted. Our analysis sheds light on the following two related insights. The first is that even

a slight easing of the social-distancing measure may cause the second wave. The second

is a behavioral mechanism behind the second wave through the threshold distancing cost

function.

Papers such as Brett and Rohani (2020), Gualtieri and Hecht (2021), MacDonald,

Browne, and Gulbudak (2021), and Meacci and Primicerio (2021) have proposed non-

behavioral SIR models to study the effect of epidemic fatigue on the dynamics of an

epidemic. Roughly, such non-behavioral SIR models introduce a new compartment that

corresponds to epidemic fatigue (e.g., a new susceptible compartment with a higher trans-

mission rate due to fatigue). Our contribution is to study distancing fatigue within a

behavioral SIR model.

Other papers have studied possibilities and reasons behind second waves. Rachel

(2020b) studies the likelihood of a second wave of an epidemic in a behavioral SIR model

and argues that lifting a mitigation policy can lead to a second wave if the society has

not achieved herd immunity. In his paper, the lockdown effectiveness is measured by a

reduction in the basic reproduction number. Numerical projections for the COVID-19

pandemic in Giannitsarou, Kissler, and Toxvaerd (2021) suggest that waning immunity

can cause several waves. Cochrane (2020) demonstrates that multiple waves of infec-

tion may occur when individuals react not to prevalence but to the number of deaths.

Goodkin-Gold et al. (Forthcoming) consider a model without distancing behavior in which

vaccination takes place in the initial period as a reduction in the number of susceptible

individuals. Our paper differs from those by introducing a new channel, variation in the

distancing cost, and explores how it can interact with policy decisions.

2 Model

We study distancing behavior of individuals whose distancing cost varies over time and

how this affects dynamics of an epidemic. We do so within the most prominent epidemic

model, the SIR model.

A continuum of individuals, indexed by i ∈ [0, 1], is infinitely lived with time labeled

by t ∈ [0,∞). The population is divided into three compartments: susceptible (S),

infected (I) and recovered (R).10 Susceptible individuals can get infected by meeting an

10As the first paper that looks at the effect of time-varying distancing cost on equilibrium social
distancing, our model abstracts from various features such as deaths and vaccines.
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infected individual. Infected individuals recover at rate γ > 0. This implies that it takes

on average 1/γ units of time to recover. After recovery, individuals acquire permanent

immunity and cannot get infected again.11 The size of the population is constant over

time: S(t) + I(t) +R(t) = 1 for all t ≥ 0.

Individuals are responsive to the threat of infection and thus might try to avoid it.

We capture this by letting a susceptible individual i choose the level of exposure to the

infection εi(t) ∈ [0, 1] at each point in time. The susceptible individual who chooses

exposure εi(t) at time t gets infected at rate βεi(t)I(t), where β > γ is the transmission

rate of the disease. Less exposure, i.e., lower εi(t), thus, decreases the chance of infection.

In the absence of the epidemic, the individual would go about her daily business with

εi(t) = 1. Conversely, we define i’s distancing at time t as di(t) := 1− εi(t). We assume

that getting infected comes at a cost η ≥ 0 while being susceptible generates a flow payoff

of πS. The assumption that the cost of infection is constant over time is akin to assuming

that the individuals are myopic.12 The standard non-behavioral SIR model corresponds

to the case with η = 0. A reduction in exposure comes at a cost ci
2

(t)(1 − εi(t))2. The

main novelty of our model is that we allow individual i’s distancing cost ci(t) to vary over

time.

More precisely, for each susceptible individual i, the distancing cost is a piece-wise

continuously differentiable function ci : [0,∞)→ [c,∞) with the following three proper-

ties: (i) there exists a lower bound c > 0 such that ci(t) ≥ c for all t; (ii) there are at

most a finite number of jump discontinuities of ci, which are common for all individuals

i, at t1 < · · · < tN such that, on each interval (tn, tn+1) with n ∈ {1, . . . , N},13 ċi(t) is a

continuous function satisfying

ċi(t) = F (t, ci(t), di(t)), (1)

where F (t, ·, ·) is a function of i’s current distancing cost ci(t) and her current distancing

level di(t);
14 and (iii) at each tn with n ∈ {1, . . . , N}, ci is right-continuous. At t = 0

11We assume that individuals know in which state they are. Dasaratha (2020) and Baril-Tremblay
et al. (2021) study environments where individuals are uncertain of the state they are in.

12This approach has been frequently adopted in the recent theoretical literature on equilibrium social
distancing. See, for example, Dasaratha (2020), Avery (2021), Engle et al. (2021), McAdams, Song, and
Zou (2023), and Carnehl, Fukuda, and Kos (2023). In contrast, in the model with farsighted individuals,
the cost of infection η serves as a co-state variable (to the probability of being susceptible), which varies
over time. The difficulty in analyzing such a case comes from the fact that the co-state variable η is
a forward-looking variable that depends on the entire future paths of behaviors and the disease. We
formally illustrate this point in Appendix D, and we confirm that our main insights hold for far-sighted
individuals through numerical simulations.

13For ease of exposition, let tN+1 =∞.
14To focus on the effect of distancing fatigue (i.e., the effect of current distancing on future distancing

costs), we do not consider the case in which an individual’s distancing cost depends on the distancing
levels of the other individuals. For such a peer effect, see McAdams, Song, and Zou (2023).
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and at any point t of jump discontinuity of ci, the value of ci(t) is exogenously given and

independent of i. Discrete jumps allow to accommodate holidays or changes in social-

distancing policies. In addition, we assume that ci(0) is independent of i and denote it

c0. A clarification is in order. While ci(t) may depend on the identity of an individual

i, the environment is symmetric due to the common law of motion F (including the

possible jump discontinuities) and the common initial cost c0. Differences in the cost

among individuals might, however, arise due to variations in the choice of distancing.

2.1 Main Applications

Two forms of time-varying distancing cost are of particular interest: (i) distancing fatigue,

that is, the decline in individuals’ willingness to reduce their social activities to prevent

infections, and (ii) policy interventions, such as restaurant closures and lockdowns.

We model distancing fatigue by having individuals’ cost of distancing depend cumu-

latively on all the previous distancing decisions

ci(t) = c0 + k

∫ t

0

e−r(t−τ)(1− εi(τ))dτ︸ ︷︷ ︸
=:ϕi(t)

, (2)

where k ≥ 0 and r > 0 are constants; details follow in Section 3. Thus, an individual’s

distancing cost ci(t) depends on a baseline distancing cost c0 and the current level of

distancing fatigue ϕi(t).

The above function captures two important properties of fatigue. First, past distanc-

ing increases each individual’s distancing cost. The constant k—the fatigue accumulation

rate—captures the rate at which current distancing increases the distancing cost. Sec-

ond, the effect of past distancing choices on the cost of distancing decays over time at the

fatigue recovery rate r. Baucells and Zhao (2019) provide a decision-theoretic axiomati-

zation of the fatigue utility model of this form.

Second, Section 4.1 models policy interventions as a reduction in the distancing cost

ci(t). When restaurants are closed and/or in-person activities are constrained, the op-

portunity cost of distancing decreases. In particular, we consider a time-varying policy

variable `(t) ∈ [c/c0, 1] with at most finitely many discontinuities such that

ci(t) = c0 · `(t) ∈ [c̄, c0], (3)
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that is, `(t) can be interpreted as the strictness of the policy intervention at time t.15

Finally, Sections 4.2 and 5 discuss the interaction between these two time-varying

distancing costs, that is, a model with policy interventions and distancing fatigue. In

that case, the distancing cost function will be

ci(t) = c0 · `(t) + ϕi(t). (4)

2.2 Equilibrium and Behavior

This subsection defines an equilibrium of our model, proves its existence and uniqueness,

and characterizes individuals’ equilibrium level of distancing as a function of the current

distancing cost and the state of the epidemic.

A susceptible individual i determines her current exposure level by solving:

max
εi(t)∈[0,1]

πS −
ci(t)

2
(1− εi(t))2 − βηI(t)εi(t). (5)

At each time t, the susceptible individual i takes the value of ci(t) as given, while the

resulting exposure level affects the slope of the distancing cost, ċi(t).
16

Let the average exposure be ε(t) := 1
S(t)

∫
εi(t)di, where the integral is taken over the

susceptible individuals. The disease dynamics are governed by the following system of

differential equations:

Ṡ(t) = −βε(t)I(t)S(t), (6)

İ(t) = I(t)(βε(t)S(t)− γ), (7)

Ṙ(t) = γI(t), (8)

for all except possibly a finite number of t, with the initial condition (S(0), I(0), R(0)) =

(S0, I0, 0) with I0 ∈ (0, 1) and S0 = 1− I0. With these in mind, we define an equilibrium.

Definition 1. An equilibrium is a tuple of functions (S, I, R, (ci, εi)i) with the following

three properties: (i) (S, I, R) are continuous functions that satisfy (6), (7) and (8) with

15Note that we could also accommodate periods of increased distancing cost, such as holidays, straight-
forwardly by allowing `(t) > 1.

16Intuitively, consider a discrete-time model in which, at the start of each period, a susceptible indi-
vidual takes her distancing cost at that time as given. Her resulting exposure level affects her distancing
cost at the beginning of the next period. Our model would correspond to the continuous-time limit of
such a model.
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the initial condition (S(0), I(0), R(0)) = (S0, I0, 0), where ε is the average exposure;17 (ii)

each εi solves (5), that is, εi is a best response to (S, I, R) given ci; and (iii) the distancing

cost function ci satisfies (1), where di = 1− εi. An equilibrium is symmetric if ε = εi for

all i.

As the susceptible individual’s objective function is concave in her exposure level, the

first-order condition of the individual’s problem yields

εi(t) = max

(
0, 1− βηI(t)

ci(t)

)
. (9)

An individual chooses a lower exposure (that is, she distances more) when the preva-

lence is higher. Distancing increases in the cost of infection η and the transmission rate

β, and decreasing in the cost of distancing ci(t). In equilibrium, εi = ε and c := ci for all

i due to (9) differing across individuals only in the distancing cost ci(t) and the fact that

ci(0) = c0 for all i. Therefore, any equilibrium is symmetric:

ε(t) = max

(
0, 1− βηI(t)

c(t)

)
. (10)

Plugging the expression for exposure (10) into the system of differential equations (6),

(7), (8), and (1) leads to the system of differential equations characterizing the equilib-

rium. We denote by (S, I, R, c, ε) the symmetric unique equilibrium. Summarizing our

discussions, we obtain:

Proposition 1. An equilibrium exists, is unique and symmetric. In the unique equilib-

rium, the system (S, I, R) satisfies I∞ := lim
t→∞

I(t) = 0, S∞ := lim
t→∞

S(t) ∈
(

0,
γ

β

)
, and

lim
t→∞

ε(t) = 1.

In our environment, the prevalence disappears in the limit as time goes to infinity,

and individuals return to full exposure. The final size of susceptibles, S∞, is below the

threshold of herd immunity γ
β
.

Throughout most of the analysis, we focus on the case in which the prevalence is

increasing at the outset: İ(0) > 0. Substituting (10) into (7) at time t = 0, this occurs

17The assumption of continuity of (S, I,R) is innocuous in light of our application. Discontinuities
could only arise at discontinuities of c(t). However, c(t) only affects behavior and the changes in I and S
over an interval of time of length ∆ > 0 is bounded from above by the SIR dynamics without behavior
and from below by a path in which no individual is infected in this interval. Both paths are continuous
as ∆ goes to zero and so are our modified dynamics.
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whenever

βS0

(
1− βηI0

c0

)
− γ > 0. (11)

The above inequality is satisfied as long as β > γ and the initial seed of infection I0 is

small enough.18

3 Continuous Distancing Cost and Distancing Fa-

tigue

This section studies the case in which the distancing cost is a continuous function of time.

Section 3.1 provides a general sufficient condition for an epidemic to be single-peaked for

a very general specification of the distancing cost. Section 3.2 investigates the model

with distancing fatigue. We show that the equilibrium prevalence peaks at most once

and discuss some consequences of distancing fatigue.

3.1 Sufficient Conditions for Single-Peaked Epidemics

A single peak of an epidemic is one of the most prominent qualitative features of the

SIR model; see, for example, Brauer and Castillo-Chavez (2012). Here, we examine

conditions on the distancing cost such that this feature remains intact. Conversely, this

provides intuition for the properties of the time-varying distancing cost that are required

for a second wave to arise. In the following, we define peak prevalence as a strict local

maximum.

Proposition 2. Let c be a (continuously) differentiable function such that ċ is given by

(1) for all t > 0. If
ċ(t)

c2(t)
<
ε2(t)

η
for all t > 0, (12)

then, in equilibrium, prevalence I has a single peak. A sufficient condition for the above

inequality to be satisfied is

ċ(t)

c2(t)
<

1

η

(
γ

βS0

)2

for all t > 0. (13)

If the distancing cost is growing slowly, that is, if ċ/c2 is small, then I has only

18Alternatively, given the fixed values of parameters other than β, there exist β and β, with γ < β < β,

such that İ(0) > 0 if and only if β ∈ (β, β).
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one local maximum. The prevalence either decreases immediately and never picks up or

increases from the outset until it reaches the peak and decreases thereafter. The proof

argues that for a second wave to arise, the prevalence would first need to attain a local

minimum at some time t > 0 for which to occur İ(t) = 0 and Ï(t) ≥ 0 are necessary. By

taking the derivative of İ, the latter requirement can be shown to be equivalent to

ċ(t)

c2(t)
≥ ε2(t)

η
.

Therefore, if ċ(t)/c2(t) < ε2(t)/η for all t > 0, there can be no local minimum and

consequently no second wave. This result nests the time-invariant distancing cost c(t) =

c0 as a special case, an environment, which was previously analyzed in Carnehl, Fukuda,

and Kos (2023), and the non-behavioral SIR model in the sense that η = 0 implies that

the right-hand side of (12) is infinity.

Moreover, note that if the reverse condition ċ(t)/c2(t) > ε2(t)/η would hold for all

t > 0, then any stationary point of I was a local minimum. This contradicts the existence

of a differentiable cost function such that İ(0) > 0, as I∞ = 0. Indeed, a similar result

can be established directly. Consider the inequality ċ(t)/c2(t) > 1/η, which is sufficient

for the above inequality and let

σ(t) :=
ċ(t)

c(t)

be the semi-elasticity of c. The above inequality can be rewritten as σ(t) > c(t)/η, that

is, the semi-elasticity of a function dominates the function itself (normalized by positive

constant η).

The next result establishes that no differentiable function exists that is everywhere

positive and that satisfies this property.

Lemma 1. There does not exist a continuously differentiable function c : [0,∞)→ [c,∞)

with c(t) ≥ c for all t, such that σ(t) > c(t)
η

for all t > 0.

The inequality σ(t) > c(t)/η, which is necessary for a second wave to arise, requires

the distancing cost c to grow extremely fast. To build further intuition, fix c0 > 0. A

solution to the differential equation σ(t) = c(t)/η on t ∈ (0, η/c0) is

c(t) =
1

1
c0
− t

η

,

which grows towards infinity as t goes towards η/c0.
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This analysis establishes that a continuous distancing cost function that generates

more than one wave needs to satisfy ċ(t)/c2(t) < ε2(t)/η for low values of t. More precisely

it must do so at the first stationary point, followed by a period where ċ(t)/c2(t) > ε2(t)/η.

The second period must, however, be limited in duration as otherwise there does not

exist a distancing cost function that satisfies these conditions. That is, for the second

wave to arise there needs to be an abrupt continuous change in the distancing cost or

a discontinuity after a first peak. In Appendix B we apply Proposition 2 to various

distancing-cost functions.

The following subsection applies the above analysis to distancing fatigue and shows

that the prevalence is single-peaked.

3.2 Distancing Fatigue

It is in human nature to socialize, and maintaining social distancing over a long time

horizon becomes increasingly difficult. This phenomenon, distancing fatigue, and its

importance have been well-documented empirically during the COVID-19 pandemic.19

As foreshadowed in Section 2.1, we model distancing fatigue using the time-varying

distancing cost function:

c(t) = c0 + k

∫ t

0

e−r(t−τ)(1− ε(τ))dτ, (14)

where k ≥ 0 is the fatigue accumulation rate and r > 0 is the fatigue recovery rate.20 It

follows that the fatigue

ϕ(t) := k

∫ t

0

e−r(t−τ)(1− ε(τ))dτ

increases in past distancing but the effect of past distancing on fatigue decays over time.

In terms of the marginal change in the distancing cost, equation (14) is written as

ċ(t) = k(1− ε(t))− r(c(t)− c0), (15)

with the initial condition c(0) = c0.
21 This differential equation is a special case of equa-

19As discussed in the Introduction, see, for example, Franzen and Wöhner (2021), Goldstein, Yeyati,
and Sartorio (2021), Joshi and Musalem (2021), Petherick et al. (2021), and Du et al. (2022).

20When k = 0, the distancing cost is constant over time. When r = 0, there is no decay, and thus the
cost of distancing is non-decreasing over time. While we rule out this case only for ease of exposition,
the single-peakedness of the prevalence (Proposition 3) still holds under r = 0.

21One can interpret fatigue c(t)−c0 as “capital:” k is the saving rate, 1−ε(t) is the current production,
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tion (1) and therefore the existence and uniqueness of equilibrium follow from Proposition

1.

3.2.1 Single-Peaked Prevalence under Distancing Fatigue

We start by developing two preliminary results. First, once individuals expose themselves

to the disease to some extent, they will never fully distance themselves afterward (i.e.,

their exposure is strictly positive afterward). Second, we show that, at the moment at

which the distancing cost attains a local maximum, prevalence is non-increasing.

Lemma 2. In equilibrium, if ε(t′) > 0 for some t′, then ε(t) > 0 for all t ≥ t′.

Intuitively, the result follows because exposure is inversely related to I(t)/c(t). There-

fore, should exposure fall to a very low level, I(t) would become decreasing and the dis-

tancing cost increasing due to fatigue accumulating. These two effects would lead the

exposure to grow, thereby preventing it from falling to 0. In other words, ε(t) can be

equal to 0 only at the outset of an epidemic. In that case, İ(0) < 0. A simple assumption

that guarantees ε(t) to be strictly positive is ε(0) = 1− βηI0
c0

> 0, which in turn is satisfied

if I0 is small enough.

Next, we show that any critical point of the distancing cost is directly related to the

prevalence dynamics at the critical point.

Lemma 3. Suppose c is given by (14) and İ(0) > 0. In equilibrium, if c attains a local

maximum (minimum) at t > 0, then İ(t) ≤ 0 (≥ 0).

If the distancing cost function has a local maximum, it must be at a time when the

prevalence is declining. To see this, suppose that the maximum of the distancing cost

function was attained when I was increasing. At the same point, the exposure would

decrease due to c being locally flat and the prevalence increasing. However, then it

cannot be that fatigue, and therefore the distancing cost function, is already maximized.

This leads us to the main result of the section.

Proposition 3. Suppose c is given by (14). If İ(0) > 0, then the following hold:

1. The prevalence I is single-peaked.

2. The distancing fatigue ϕ and thus the distancing cost c are single-peaked.

3. The distancing fatigue ϕ attains its peak no earlier than the prevalence I.

and r is the depreciation rate.

13



The first part of Proposition 3 implies that distancing fatigue itself cannot cause a

second wave. For a second peak to arise, the prevalence would have to attain a local

minimum first and then begin to increase again. However, when the prevalence is falling,

the growth of fatigue slows down and fatigue may even decrease. As a consequence,

distancing is not decreasing fast enough to jump-start another wave.

The single-peakedness of prevalence has important implications for other objects in

the model as the second part of Proposition 3 shows. First, since the fatigue recovery

rate r is strictly positive, fatigue is bounded from above:

ϕ(t) = k

∫ t

0

e−r(t−τ)(1− ε(τ))dτ ≤ k

r
. (16)

Second, the strictly positive fatigue recovery rate implies that fatigue cannot be strictly

increasing in equilibrium over the entire time horizon. Since the cost of distancing is

bounded from below by c0, distancing will dissipate with the eventually vanishing preva-

lence. The fatigue recovery rate implies that, as time passes, fatigue will vanish too.

Figure 1 illustrates Proposition 3 when c0 = 2, r = 0.05, and k = 0.02.22 Prevalence

initially increases relatively quickly which causes individuals to engage in more social

distancing. Consequently, the distancing cost increases due to fatigue accumulating. As

the cost increases and the prevalence approaches its peak, individuals start increasing

their exposure level again. After some time, this causes fatigue, and thus, the distancing

cost, to slowly decrease.23

Two remarks are in order. First, when ε̇(0) < 0, i.e., the susceptible individuals

increase distancing at the onset of the epidemic, distancing peaks no later than the

peak prevalence. This is because, when the prevalence peaks, the distancing cost is still

increasing and thus distancing is decreasing. Since distancing is increasing at the onset

of the epidemic, at some point no later than when the prevalence peaks, distancing has

to peak. Figure 1 also illustrates this fact. Thus, there is a period (from day 62 to 96 in

the figure) in which both prevalence and exposure increase.

Second, as time goes to infinity, the distancing cost converges to its initial level:

lim
t→∞

c(t) = c0. In other words, individuals recover from fatigue, lim
t→∞

ϕ(t) = 0. This is

22The other parameters are (β, γ, I0, η, c0, k) = (0.3 + 1
7 ,

1
7 , 0.95 × 10−4, 2761.63, 0.05, 0.005). The

parameters (β, γ, η) are calibrated for the onset of COVID-19 (when the cost of distancing is normalized
at c = 2) as in Carnehl, Fukuda, and Kos (2023). Unless otherwise stated, we use these parameter values
for (β, γ, η) throughout the paper.

23Note that prevalence remains at an almost constant level in our model after the peak. This pattern
has been empirically documented for the COVID-19 pandemic (e.g., Atkeson, Kopecky, and Zha, 2020
and Gans, 2022). In fact, Gans (2022) proposes a behavioral SIR model in which prevalence is assumed
to be constant to simplify the analysis.
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Figure 1: Distancing Fatigue. The solid curves depict the prevalence I, the distancing
cost c, and the exposure level ε over time. For comparison, the dashed curves depict the
analogous paths under constant distancing cost c0.

intuitive as the infection dies out and individuals stop distancing in the limit.

To conclude, our findings suggest that distancing fatigue does not affect qualitative

features of the prevalence trajectory. This, however, is not to say that distancing fatigue

cannot play an important role in epidemiological models.

First, it may very well have critical quantitative implications. Goldstein, Yeyati,

and Sartorio (2021), for example, show that after four months of lockdown during the

COVID-19 pandemic, non-pharmaceutical interventions had a significantly lower effect

on reducing fatalities. In our model, the peak prevalence in the model with distancing

fatigue is always higher than the peak prevalence in the model without distancing fatigue,

and the peak prevalence in the model with distancing fatigue is reached no earlier than

the one without distancing fatigue. Thus, distancing fatigue may burden the medical

capacity constraint at the peak prevalence.

Second, distancing fatigue introduces two opposing effects on individuals’ distancing

decisions. On the one hand, when the distancing cost increases due to distancing fa-

tigue, ceteris paribus, the individuals increase their exposure because distancing becomes

costlier. On the other hand, higher prevalence due to distancing fatigue makes it costlier
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for an individual to increase exposure. This second effect decreases individuals’ exposure

levels. Hence, to measure the effect of distancing fatigue on exposure, it is also impor-

tant to measure the effect that an increased prevalence has on individuals’ preventive

behavior.

Third, distancing fatigue introduces a negative dynamic spillover to lockdown policies.

By encouraging or enforcing social distancing in the current period, the lockdown reduces

distancing incentives in the future due to accumulated distancing fatigue. Holding lock-

down stringency fixed, lockdown effectiveness declines over time and the likelihood of

a second wave may increase should the lockdown be lifted. Our result that distancing

fatigue alone does not cause the second wave is important because it suggests that the

second wave may result rather from the discrete increase in distancing cost from lifting

the lockdown policy. The next section studies the effect of a discrete change in distancing

cost on the disease dynamics. Thereafter, we will investigate the interaction of lockdown

policies with fatigue accumulation.

4 Discontinuous Distancing Cost and Policy Inter-

ventions

The cost of social distancing depends not only on previous exposure decisions but also on

other factors, such as holidays or public health policies. The opportunity cost of social

distancing sharply increases during holiday seasons when social gatherings have high

value or during vacation times. Mehta et al. (2021) report an increase in travel and social

activity during Thanksgiving 2020. Schlosser et al. (2020) document an increase in travel

during school and public holidays. In contrast, business closures due to a governmental

lockdown discretely lower the opportunity cost of social distancing. When public health

policies are lifted or holidays pass, the cost of distancing returns to its initial level.

The following subsection examines the effects of discontinuous changes in the cost

of distancing. While the analysis to follow is cleanest with discontinuous changes, the

results do not rely as much on the discontinuity as they do on sudden rapid changes in

the cost of distancing. We focus on policy interventions that encourage social distancing

behavior, that is, that reduce the distancing cost. However, introducing periods of in-

creased distancing cost (i.e., holidays) can be straightforwardly implemented as well by

allowing the distancing cost to increase. Appendix C.1 analyzes such a case. Subsection

4.2 shows how various ways of modeling public policies in the literature can be recast as

changes in the distancing cost.
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4.1 Threshold Distancing Cost

Before studying the effects of discontinuous changes in the distancing cost in detail, we

introduce a useful technical tool to determine whether a policy change will lead to a

second wave. In particular, we characterize the threshold on the distancing cost c(t) such

that if c(t) is above the threshold c(t), the slope of prevalence is positive, and if c(t) is

below the threshold c(t), the slope of prevalence is negative. The difference between the

threshold and the actual distancing cost c(t) is the largest instantaneous change in c(t)

that will not change the sign of the slope of I(t).

Definition 2. Let c be a piece-wise continuously-differentiable distancing cost function

and let (S, I, R, c, ε) be the corresponding equilibrium. We define the threshold distancing

cost function c as follows: for each t ≥ 0,

c(t) :=


β2I(t)S(t)η
βS(t)−γ , if S(t) > γ

β

∞, if S(t) ≤ γ
β

.

In Definition 2, note that (S, I, R) are continuous functions satisfying (6), (7) and (8)

with the initial condition (S(0), I(0), R(0)) = (S0, I0, 0), where ε is the average exposure

that satisfies (10). The equilibrium is unique and symmetric. With this definition in

mind:

Proposition 4. Let c be a piece-wise continuously-differentiable distancing cost function,

and let c be the associated threshold distancing cost function. For any t > 0 and piece-

wise continuously-differentiable distancing cost function c2 such that the corresponding

equilibrium (S2, I2, R2, c2, ε2) satisfies the property that c2(s) = c(s) for all s < t, the

following holds:

İ2(t+) := lim
τ↓t

İ2(τ) < 0 if and only if c2(t) < c(t).

In words, the threshold distancing cost function c satisfies the following property.

Fix a distancing cost function c and its implied equilibrium, and consider an alternative

distancing cost function c2 that coincides with c up to time t. Then, c(t) prescribes the

largest value that the distancing cost c2(t) can take on such that the right-limit of the

derivative of I(t) under c2(t) is negative.24

Whenever c is such that I is single-peaked in equilibrium, the threshold distancing-

cost function c intersects c once and from below. In particular, as long as İ(t) > 0,

24Note that c depends on the equilibrium path (S, I,R, c, ε) under the distancing cost function c.
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c(t) < c(t) and conversely so if İ(t) > 0. In addition, when S(t) approaches γ
β

from

above, c(t) grows towards infinity.

The difference c− c plays an important role. When the prevalence is decreasing, the

cost difference informs by how much the cost can instantaneously increase without the

prevalence starting to increase. Conversely, when the prevalence is already increasing,

the difference c− c establishes by how much the cost of distancing must decrease for the

prevalence to start falling. This is of particular interest to policymakers who are trying to

establish the strictness of public health policies required to reduce the prevalence immedi-

ately. Conversely, it can be used to establish whether lifting a policy will lead to a second

wave. Hatchett et al. (2007), Bootsma and Ferguson (2007), and Caley et al. (2008)

suggest that, during the 1918 influenza pandemic, relaxations in non-pharmaceutical in-

terventions caused a new surge of cases.

In the remainder of this subsection, we demonstrate how the threshold function c

evolves over time in two numerical examples. First, we consider a constant distancing

cost function and illustrate how the threshold function c evolves in the absence of any

changes. Second, we consider the introduction of a temporary lockdown and show how

the threshold function c can guide policymakers.

Example 1. To illustrate the threshold distancing cost c, we consider a simple example

in which the distancing cost c is constant over time. The left panel of Figure 2 depicts

the threshold distancing cost function c (solid curve) for the corresponding constant

distancing cost function c = 2 (dashed line). The right panel depicts the prevalence over

time.25 The peak prevalence is attained around day 36.26

Example 2. Next, we consider the introduction of a social-distancing policy. Letting

the baseline distancing cost be c(t) = c0 = 2, recall that the left panel of Figure 2 shows

by how much the distancing cost c must be reduced to decrease the prevalence before it

would reach its peak otherwise. The threshold cost c(t) is 1.8 around day 15 and the peak

prevalence is attained on day 35. Suppose that the social-distancing measure `(t) = 0.9

(where `(t) is defined as in equation (3)), which decreases distancing cost to c(t) = 1.8,

is introduced on day 30.

25The example depicted in Figure 1 corresponds to the case in which distancing fatigue is added to
the constant distancing cost case depicted in Figure 2.

26While the prevalence theoretically declines towards 0 in this constant distancing cost case, the right
panel suggests that the decline is slow (recall footnote 23). The shape of the threshold distancing cost
function c in the left panel of Figure 2 reflects this feature. Namely, c, while growing, stays close to 2
for an extended period of time after the peak. Although it is difficult to see from the figure, c and c
intersect only once (around day 36).
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Figure 2: Constant Distancing Cost. The left panel depicts the threshold distancing cost
function c over time. The right panel depicts the prevalence I over time.

Figure 3: Social-Distancing Policy. The left panel depicts the threshold distancing cost
function c over time. The central panel depicts the exposure level ε over time. The right
panel depicts the prevalence I over time.

The left panel in Figure 3 gives a new threshold distancing cost function c when

the distancing cost function satisfies c(t) = 1.8 for t ≥ 30 (the solid curve). After

the introduction of the social-distancing measure, the prevalence decreases, and the new

threshold c endogenously decreases as well. The figure shows that on day 50, the threshold

cost is close to (but above) the current distancing cost.

To understand the new threshold distancing cost function, consider how individuals

respond to the social-distancing measure. As the central panel of Figure 3 shows, in-

dividuals best respond to the policy measure by decreasing their exposure levels. The

resulting increase in distancing lowers prevalence, which leads to a feedback effect of

increasing exposure. The prevalence nevertheless continues to decrease but individuals’

responses slow down this decrease. The right panel illustrates this point.

After day 50, virtually any easing of the social-distancing measure causes the second

wave. For instance, assume that the distancing measure is lifted in its entirety after two

months (i.e., on day 90). The right panel of Figure 3 indicates that the infection resurges,
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and around day 111, the prevalence almost coincides with the case in which no distancing

measure is introduced.27

4.2 Public Policies as Time-Varying Distancing Cost

Several papers have analyzed optimal mitigation policies in a reduced form by assuming

that a planner controls the path of the disease.28 That is, they assume that a planner

directly controls the time-varying transmission rate, β(t), or social interactions, ε(t). Both

cases can be viewed as a planner controlling an effective transmission rate β̃(t) = β(t)ε(t),

in which either β(t) is controlled and ε(t) is constant or in which β is constant and ε(t)

is controlled.

While mask mandates can directly affect the transmission rate, the attainable levels of

the transmission rate are limited by such a policy alone. Many countries have introduced

additional policies beyond mask mandates to reduce transmission during the COVID-

19 pandemic. Such policies aim at reducing the spread of the infection via reduced

social interactions, such as bar and restaurant closures. However, to understand the

effect of such policies—which affect the individuals’ incentives to socially distance—,

behavior should be modeled explicitly because they are only effective through individuals’

endogenous choices, which, in turn, depend on the current state of the epidemic.29

Nevertheless, the results obtained in these papers are important to understand the

desirable epidemic paths of a planner who optimizes subject to macroeconomic or other

cost considerations. Therefore, we show how our equilibrium distancing model with a

time-varying cost can be used to back out the policy path affecting the cost directly to

induce a desirable effective transmission rate β̃(t). That is, given an optimal path β̃(t),

which was obtained without explicitly modeling behavior, we derive the cost function

c(t) that can implement the time-varying transmission path when endogenous behavioral

responses are taken into account.

27A vaccination campaign (i.e., a reduction in S) during a lockdown helps prevent the resurgence of
the infection. All else being equal, a reduction in S(t) increases the threshold distancing cost c(t) as
∂c(t)
∂S(t) = − β2ηγI(t)

(βS(t)−γ)2 < 0.
28See, for example, Acemoglu et al. (2021), Alvarez, Argente, and Lippi (2021), Farboodi, Jarosch,

and Shimer (2021), Chakrabarti et al. (2022), and Kruse and Strack (2022).
29Carnehl, Fukuda, and Kos (2023) show that policies that affect distancing incentives via reductions

in the transmission rate and changes in the cost of distancing have qualitatively different effects on the
path of an epidemic.
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Consider a desirable time-varying transmission rate β̃(t) for given primitives of the

non-behavioral SIR model (i.e., β, γ, I0, and S0 = 1− I0). The dynamics of the disease

under the desirable transmission rate function β̃ follows the system of equations (6),

(7), and (8) where βε(t) is replaced by β̃(t). Then, we can use our model to solve for

the time-varying distancing cost function c̃ implementing the transmission rate function

β̃(t) = βε(t) via

c̃(t) :=
β2ηI(t)

β − β̃(t)
,

provided β̃(t) < β. Recalling equation (3), without distancing fatigue, the required

lockdown severeness ˜̀(t) follows

˜̀(t) :=
β2ηI(t)

c0(β − β̃(t))
.

However, recalling equation (4), we can straightforwardly also incorporate distancing

fatigue ϕ(t) to obtain:

˜̀
ϕ(t) :=

1

c0

(
β2ηI(t)

β − β̃(t)
− ϕ(t)

)
.

It should be noted that there is an endogenous upper bound on the implementable

β̃(t), which derives from individuals’ endogenous distancing without policy interventions.

Unless meetings can be subsidized during an epidemic—that is, more exposure encouraged

than individuals would voluntarily engage in—, β̃(t) > β cannot be attained.

An important observation is that the strictness of the policies in place depends not

only on the transmission rate to be implemented but also on current prevalence I(t),

fatigue ϕ(t), and the cost of infection η. If the prevalence or the cost of infection is high

or if fatigue is low, policies do not have to be as strict to induce a certain transmission rate

as otherwise. This suggests that in models studying the optimal control of a transmission

rate during an epidemic, the cost function of reducing the transmission rate should at least

depend on the current prevalence to take endogenous distancing decisions into account.30

Finally, an analogous approach is feasible to implement desired levels of the effective

reproduction number Re(t) which measures how many secondary infections are caused

30The distancing cost function c̃ can be interpreted as the ratio between the marginal benefit of

distancing βI(t)η (relative to c0) and the reduction of the transmission rate β−β̃(t)
β .

21



by each infected individual.31 Whenever Re(t) > (<)1, the prevalence is increasing (de-

creasing). For example, Budish (2020) considers Re(t) ≤ 1 as a constraint for a planner

without an explicit dynamic equilibrium model.32 In our setting, this constraint corre-

sponds to the current policy satisfying the constraint that c(t) ≤ c(t) as in Proposition

4.

5 Numerical Analysis of Public Policies with Dis-

tancing Fatigue

In this section, we combine the two sources of time variation in the distancing cost—public

policies and distancing fatigue—and demonstrate that distancing fatigue can have adverse

effects on a well-intended public policy.

We simulate our model on the basis of numbers motivated by China’s strict COVID-19

lockdown and show that a strict lockdown from the outset of the epidemic may increase

both the final number of infected individuals and the peak of the prevalence in the second

wave arising upon the lifting of the lockdown. The reason is that a lockdown imposed at

the beginning of the epidemic, that does not completely eradicate the infection, effectively

postpones the spread of the disease until the lifting of the lockdown. At that point,

individuals are fatigued and thus reluctant to distance as much as they would have in the

absence of the lockdown.

While the analysis based on China’s lockdown below is relatively extreme in terms of

the strictness and duration of the policy as well as the calibrated fatigue parameters, the

insights are more general. Appendix C.2 provides an illustration of the disease dynamics

for more moderate fatigue parameters and shorter, less strict policies, and demonstrates

that similar qualitative patterns arise.

Example 3. To illustrate the interaction between fatigue and public policy, we approx-

imate China’s COVID-19 lockdown within our model. We choose the model parameters

(β, γ, I0, η, c0) based on the parameters calibrated in Carnehl, Fukuda, and Kos (2023).

We impose a lockdown in the model starting 10 days after the epidemic’s start. To fo-

cus on the effect of distancing fatigue during the lockdown, we assume that individuals’

31In the non-behavioral SIR model, the effective reproduction number is given by β
γS(t). In our

behavioral SIR model, the effective reproduction number is given by βε(t)
γ S(t).

32Note that while the effective reproduction number empirically has the tendency to be close to one for
some time endogenously (see, for example, Atkeson, Kopecky, and Zha (2020) for data on the COVID-19
pandemic, and the discussion in Gans (2022)) policymakers have to take into account how changes in
the distancing cost due to imposing and lifting lockdowns affect the prevalence.
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Figure 4: Lockdown Policy. The left panel depicts the prevalence curves (with and
without the lockdown) until after 50 days at which the lockdown is lifted. The central
panel depicts the prevalence I since the lockdown is lifted. The right panel depicts the
susceptible population S since the lockdown is lifted.

distancing cost is constant before the lockdown is imposed and follows equation (14) af-

terwards. For simplicity, we assume that the lockdown lasts for 365 days. The lockdown

induces a 75% reduction in social activity in line with the empirical findings in Zhong

et al. (2022), who find a 74.1-80% reduction in mobility in China.33 To obtain reasonable

distancing fatigue parameters (k, r) for equation (14), we choose the fatigue parameters

such that the model-predicted peak after the lifting of the lockdown would match the

peak of the second wave observed in China. We chose k = 0.02η and r = 0.01.

The left panel of Figure 4 depicts the prevalence curves under no lockdown policy

(dashed) and under the lockdown policy (solid) until day 425 (50 days after lifting the

lockdown). The central panel of Figure 4 depicts the prevalence curve after the lockdown

policy is lifted (day 375). The prevalence peaks on day 442, approximately two months

after the policy is lifted. At the peak, around 27% of individuals are infected. The right

panel suggests that, at that point, approximately two thirds of the population has been

infected.34

To understand the role played by the strict lockdown interacting with distancing

fatigue, note that the non-behavioral SIR model, which provides an upper bound for our

behavioral model, predicts the peak prevalence at roughly 31%.35 In a behavioral SIR

model without distancing fatigue, the peak prevalence would be at about 0.1%. Hence,

it seems that in a model with both distancing fatigue and a long and strict lockdown the

33As discussed in Section 4.2, a time-varying lockdown policy `(t) can implement a desired, constant
reduction in social activity.

34This is not far away from the statement made by the chief epidemiologist of China’s Center for
Disease Control and Prevention that the “epidemic has already infected about 80% of the people”
in China as of January 21, 2023 (https://edition.cnn.com/2023/01/22/china/china-covid-80-lunar-new-
year-intl-hnk/index.html).

35A strict, long lockdown leads to high levels of fatigue and thus a high distancing cost upon lifting
the lockdown. When βη/c(t) ≈ 0, the disease dynamics after the lockdown can be well approximated
by the standard non-behavioral SIR model with the post-lockdown initial condition (S∗, I∗) as the share
of susceptible individuals is still high as the lockdown was imposed early in the epidemic. This model
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Figure 5: Different Lockdown Policies. The left panel depicts the total number of infec-
tions (1− S∞) as a function of the lockdown duration and for different starting times of
the lockdown. The right panel depicts the corresponding levels of peak prevalence.

benefits of voluntary social distancing are almost entirely removed.

We can quantify the contribution of the prolonged lockdown on the peak prevalence

by considering the situation in which the lockdown is not implemented but individuals

still accumulate fatigue. In this case, the peak prevalence would be at about 15% (see

the right panel of Figure 5). Thus, while fatigue alone accounts for an increase of the

peak prevalence from 0.1% to 15%, the prolonged lockdown accounts for an additional

increase of the peak prevalence from 15% to 27%, suggesting that the contribution of the

prolonged lockdown is substantial.

Figure 5 depicts the total number of infections (1 − S∞) and the prevalence at the

second peak as a function of the lockdown duration. To see the robustness of the qual-

itative features of these two measures, we consider three different fatigue accumulation

rates k ∈ {0.02η, 0.01η, 0.005η}. The other model parameters are fixed. It is striking to

see that both the total number of infections 1 − S∞ and the peak prevalence are lowest

without any lockdown—they are initially increasing in the lockdown duration. After a

certain threshold duration of the lockdown, we observe that while a policy-maker may

have preferred to impose a shorter or no lockdown at all, the size of the epidemic and

the second peak prevalence can be reduced only by keeping the lockdown in place for an

extended period of time.36

predicts a peak prevalence of

I =
γ

β
log

(
γ

β

)
− γ

β
− γ

β
log(S∗) + S∗ + I∗

(see, for instance, Brauer and Castillo-Chavez, 2012). As discussed in the main text, this gives the
prevalence of the second peak at 31% as opposed to 27% in our example.

36Note, however, that in these simulations, we do not impose any direct lockdown cost and only
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This example illustrates the important trade-off between breaking an initial wave of

an epidemic with a strict lockdown policy and the cost of lifting the lockdown while

individuals have accumulated substantial levels of distancing fatigue.

6 Conclusion

This paper introduces a behavioral SIR model with time-varying distancing costs. After

deriving qualitative results about the course of an epidemic with distancing cost functions

that vary over time, we focus on two main applications: distancing fatigue and public

policies.

We incorporate endogenously evolving distancing fatigue into a behavioral SIR model

by assuming that individuals’ distancing costs increase in their past distancing behavior.

We show that distancing fatigue alone cannot cause a second wave of infection. In fact,

for a second wave to arise, the distancing cost has to increase rapidly after the first peak

of active infections. Distancing fatigue postpones the time at which prevalence peaks

and raises the level of peak prevalence. Thus, distancing fatigue may have substantial

consequences for the medical system even though the qualitative patterns of the infection

dynamics remain the same as in the model without fatigue (i.e., the prevalence remains

single-peaked).

While distancing fatigue alone does not cause a second wave, changes in public policies

can. In particular, the removal of a mitigation policy can induce a sufficient increase in

the distancing cost for a second wave to arise. Thus, policymakers must consider the con-

sequences of changes in public policies through behavioral responses carefully. To guide

such considerations, we formulate a threshold distancing cost function: If individuals’

distancing costs remain below the threshold then the prevalence does not increase.

Finally, we examine the interplay of lockdown policies and distancing fatigue. Cru-

cially, distancing fatigue imposes a negative dynamic spillover on lockdowns. The policy

that curtails mobility in the current period reduces distancing incentives in the future

via two channels: i) lower prevalence and ii) accumulated distancing fatigue. Holding

lockdown stringency fixed, distancing fatigue reduces lockdown effectiveness over time,

and increases the prevalence level of a second wave should the lockdown be lifted. Con-

sequently, a current lockdown decreases the effectiveness of any future lockdown policies.

In addition, we demonstrate that longer lockdowns can cause higher prevalence levels in

consider relatively early starting dates of the lockdown.

25



the second wave—even exceeding the prevalence levels without any lockdown at all.
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A Proofs

Proof of Proposition 1. At each time t, an individual’s problem (5) is concave. Thus,

the first-order condition (9) is sufficient. This pins down the individual’s optimal dis-

tancing in the SIR dynamics.

Using the exposure obtained from (9) in the SIR dynamics together with the cost-

function evolution yields

Ṡ(t) = −βS(t)I(t) max

(
1− ηβI(t)

c(t)
, 0

)
, (17)

İ(t) = βS(t)I(t) max

(
1− ηβI(t)

c(t)
, 0

)
− γI(t), (18)

Ṙ(t) = γI(t), (19)

ċ(t) = F

(
t, c(t),max

(
1− ηβI(t)

c(t)
, 0

))
, (20)

for all but possibly a finite number of t, at which at least one of the variables (S, I, R, c)

is not differentiable. Let t1 < · · · < tN be the set of these points (this set may possibly

be empty). Let tN+1 =∞.

Thus, in any equilibrium, (S, I, R, c) is characterized by the system of differential equa-

tions d
dt

(S, I, R, c) = G(t, S, I, R, c), where G is defined by (17), (18), (19), and (20). The

initial condition is (S(0), I(0), R(0), c(0)) = (S0, I0, 0, c0). Then, the initial value prob-

lem admits a unique solution (S, I, R, c) on [0, t1), as the system satisfies the conditions

of the Picard-Lindelöf Theorem. Namely, the function G is continuous on the domain

D = [0, t1)× [0, 1]3× [c,∞), and G is uniformly Lipschitz continuous in (S, I, R, c): there

exists a Lipschitz constant L satisfying ‖G(t, S, I, R, c)−G(t, S̃, Ĩ , R̃, c̃)‖ ≤ L‖(S, I, R, c)−
(S̃, Ĩ , R̃, c̃)‖ for each t ∈ [0, t1). See, for example, Walter (1998). Since the equilibrium

definition requires S, I and R to be continuous, we apply the same logic to the interval

[t1, t2) with the initial value (S(t1), I(t1), R(t1)) = lim
t↑t1

(S(t), I(t), R(t)) and all the subse-

quent intervals. Note that each c(tn) is also given. Now, ε = εi is uniquely determined,

and hence the model admits a unique and symmetric equilibrium.

Next, we show lim
t→∞

I(t) = 0. Since R(·) ∈ [0, 1] is weakly increasing, lim
t→∞

R(∞) exists

in [0, 1]. By equation (19), we must have 0 = lim
t→∞

Ṙ(t) = γ lim
t→∞

I(t), establishing I∞ = 0.

Next, lim
t→∞

ε(t) = 1 follows from taking the limit of (10) because the distancing cost

is bounded from below, c(t) ≥ c, and lim
t→∞

I(t) = 0.
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Finally, having established lim
t→∞

I(t) = 0 and lim
t→∞

ε(t) = 1, one can show S∞ ∈
(

0, γ
β

)
as in the proof of Lemma 3 in Carnehl, Fukuda, and Kos (2023).

Proof of Proposition 2. To have at least two peaks, there must be two local strict

maxima of I at t2 > t1 ≥ 0. Because I is continuous it has a minimum on [t1, t2] by the

extreme value theorem. Moreover, since t1 and t2 are local strict maxima, the minimum

has to be attained at some t̂ ∈ (t1, t2). The fact that in equilibrium S, I and R are

continuous implies that I is differentiable and that its derivative is given by (7).

As I has a local minimum at t̂, İ(t̂) = 0 and thus βε(t̂)S(t̂) = γ. It follows that

ε(t) = 1 − βηI(t)
c(t)

> 0 and S(t) > 0 in the neighborhood of t̂. Therefore, the function Ï

exists and is obtained by differentiating İ at t = t̂:

Ï(t) = İ(t)(βε(t)S(t)− γ) + βI(t)(ε̇(t)S(t) + ε(t)Ṡ(t)).

Evaluating Ï(t) with İ(t) = 0 yields

Ï(t)
∣∣∣
İ(t)=0

= βI(t)(ε̇(t)S(t) + ε(t)Ṡ(t)). (21)

Substituting

ε̇(t) =
−βηI(t)

c(t)

(
İ(t)

I(t)
− ċ(t)

c(t)

)
and Ṡ(t) = −βε(t)I(t)S(t)

into (21) results in

Ï(t)
∣∣∣
İ(t)=0

= β2ηI2(t)S(t)

(
ċ(t)

c2(t)
− ε2(t)

η

)
. (22)

For no interior minimum to exist it is sufficient to show that Ï(t)|İ(t)=0 < 0 for all

t > 0, which occurs precisely when (12) holds.

Since ε(t) = γ
βS(t)

when İ(t) = 0, (12) can be rewritten as

ċ(t)

c2(t)
<

γ2

ηβ2S2(t)
for all t > 0.

Due to S being non-increasing over time, a sufficient condition for the above condition is

(13), as desired.
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Proof of Lemma 1. Suppose σ(t) > 1
η
c(t) for all t > 0, that is,

1

η
<
σ(t)

c(t)
= − d

dt

(
1

c(t)

)
for all t > 0.

Since c is continuously differentiable, the right-hand side of the above expression is contin-

uous. Integrating both sides from some t0 > 0 to t > t0, it follows from the fundamental

theorem of calculus that
t− t0
η

+
1

c(t)
<

1

c(t0)
.

Since 1
c(t0)

is finite, the inequality can obtain only if c(t) < 0 from some t̂ on.

Proof of Lemma 2. Suppose, to the contrary, that individuals choose ε(t) = 0 for some

t > t′, and let t := inf{t ≥ t′ | ε(t) = 0}. Since I and c are continuous in equilibrium,

so is ε. Thus, ε(t) = 0 and consequently t > t′. Towards the contradiction we will argue

that in any small enough left neighborhood of t, ε̇(t) > 0.

At any t where ε(t) > 0, ε is differentiable with derivative

ε̇(t) = (1− ε(t))

(
ċ(t)

c(t)
− İ(t)

I(t)

)
. (23)

In addition, ε(t) > 0 on (t, t′) implies

c(t)− c0 = k

∫ t

0

e−r(t−τ)(1− ε(τ))dτ

< k

∫ t

0

e−r(t−τ)dτ

<
k

r
.

Since I and c are continuous in equilibrium, for any δ1 > 0, there exists δ2 > 0 such that

ε(t) < δ1 if t ∈ (t − δ2, t]. But then, given that c(t) − c0 < k
r
, δ1 can be chosen small

enough so that r(c(t) − c0) < k(1 − ε(t)). In other words, for δ2 small enough, ċ(t) > 0

for t ∈ (t− δ2, t). Moreover, equation (7) implies that İ < 0 whenever ε < γ
β
. Therefore,

δ1 can be chosen so that ċ(t) > 0 and İ(t) < 0. Consequently, due to (23), ε̇(t) > 0 on

(t − δ1, t). But this means that, whenever ε(t) becomes very small, it starts increasing

and thus cannot reach 0.

Proof of Lemma 3. As İ(0) > 0, it must be the case that ε(0) > 0. By Lemma 2,

ε(t) > 0 for all t ≥ 0. By implication ε and therefore ċ are differentiable for all t > 0.
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Suppose c attains a critical point at some t. Thus, ċ(t) = 0. Differentiating (15) and

evaluating it at ċ(t) = 0 yields

c̈(t)|ċ(t)=0 = −kε̇(t) = k
βηİ(t)

c(t)
.

Thus, if c attains a local maximum (minimum) at t, it is necessary that İ(t) ≤ 0 (≥ 0).

Proof of Proposition 3. We first prove the first part of Proposition 3. Since İ(0) > 0

and I∞ = 0, it follows that I peaks at least once. In addition, İ(0) > 0 implies ε(0) > 0

and thus by Lemma 2, ε(t) > 0 for all t > 0. As a consequence, İ(·) is differentiable.

Let t1 be some t at which a local maximum of I is attained. Thus, İ(t1) = 0 and

Ï(t1) ≤ 0. Then by (22) in the proof of Proposition 2, it must be the case that

ċ(t1)

c2(t1)
≤ ε2(t1)

η
.

Let t2 be the smallest t > t1 such that İ(t) = 0 and Ï(t) ≥ 0. If it exists, t2 is the first

local minimum after t1. If there is no local minimum after the first local maximum, our

result is proven.

We consider two cases. First, suppose c(t2) ≥ c(t1). Then:

ċ(t2) = k(1− ε(t2))− r(c(t2)− c(0))

< k(1− ε(t1))− r(c(t1)− c(0))

= ċ(t1),

where the inequality follows from the fact that at any t such that İ(t) = 0, ε(t) =

γ/(βS(t)) and that S(t) is decreasing. As a consequence,

ċ(t2)

c2(t2)
<

ċ(t1)

c2(t1)
≤ ε2(t1)

η
<
ε2(t2)

η
,

which, due to equality (22) in the proof of Proposition 2, contradicts the assumption that

İ(t2) = 0 and Ï(t2) ≥ 0.

Second, suppose c(t2) < c(t1). By the definition of t2, I(t1) > I(t2) and I is decreasing

on [t1, t2]. Since c is continuous on [t1, t2], it attains a maximum and minimum on the

interval by the extreme value theorem. Lemma 3 implies that if c attains an interior

extremum, then it has to be a local maximum. Alternatively, c is decreasing on the whole

interval. In either case ċ(t2) ≤ 0. But then the inequality ċ(t2)
c2(t2)

< ε2(t2)
η

is automatically
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satisfied and thus Ï(t2) < 0, which contradicts the supposition.

Thus, there does not exist a time t2 ∈ (t1,∞) such that İ(t2) = 0 and Ï(t2) ≥ 0.

The third part of Proposition 3 follows from Lemma 3.

The proof of the second part of Proposition 3 contains two steps. The first step shows

that c has a local maximum. The second step shows that c is single-peaked.

First, since ċ(0) = k(1 − ε(0)) > 0, there exists t1 such that c(t1) > c0. Otherwise,

ċ(0) ≤ 0, a contradiction. Since r > 0 and lim
t→∞

ε(t) = 1, it follows that lim
t→∞

c(t) = c0.

Thus, there exists t2 ≥ t1 such that c(t) ≤ c(t1) for all t ≥ t2. Now, c admits a local

maximum on [0, t2] by the extreme value theorem. By construction, the local maximum

of c on [0, t2] is a local maximum on [0,∞).

Second, suppose to the contrary that there would exist t1 and t2 at which c attains

local maxima and a t′ ∈ (t1, t2) such that c(t′) < min (c(t1), c(t2)). Since c is continuous,

it has a minimum on the interval [t1, t2] by the extreme value theorem. Let t̃ ∈ (t1, t2)

be some t at which c is minimized over [t1, t2]. Then ċ(t1) = ċ(t̃) = ċ(t2) = 0. Using

equation (15), we obtain

1− ε(t) =
r

k
(c(t)− c0) for t ∈ {t1, t̃, t2}.

As r > 0, the inequality c(t̃) < min (c(t1), c(t2)) implies that 1−ε(t̃) < min (1− ε(t1), 1− ε(t2)).
In turn, the last two inequalities together with (10) imply that I(t̃) < min (I(t1), I(t2)),

which would contradict that I is single-peaked as established in Proposition 3.

Proof of Proposition 4. Take c, t, and c2 as in the statement of the proposition. Sup-

pose that c2(t) = c(t). Let (S2, I2, R2, c2, ε2) be the equilibrium under c2. By the definition

of the equilibrium, S2 and I2 are continuous. Notice that S2 and I2 coincide with S and

I on [0, t].

If c2 has any discontinuities at some τ > t, let t′ be smallest τ > t where c2 is

discontinuous; otherwise set t′ = ∞. Since S2 and I2 are continuous, it follows from (6)

and (7) that Ṡ2 and İ2 exist and are continuous on (t, t′). Notice that

βε2(t)S2(t)− γ = 0.

By continuity of ε2 and S2 for every δ1 > 0 there exists a δ2 > 0 such that |ε2(t)S2(t)−
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ε2(s)S2(s)| < δ1 for all s such that |s− t| < δ2. Consequently,

İ2(τ) = I2(τ)(βε2(τ)S2(τ)− γ)

< I2(τ)(βε2(t)S2(t) + δ1 − γ)

= δ1I2(τ),

for all τ ∈ (t, t + δ2). Therefore the right limit of İ2(τ) at t is 0. It is then easy to see

that if c2(t) < c(t) the derivative of I2 would be smaller than 0.

B Appendix to Section 3: Applying Proposition 2

We apply Proposition 2 to show that the prevalence of a disease is single-peaked for several

natural distancing-cost function specifications. The examples illustrate the usefulness of

Proposition 2 as it does not require an analysis of the potentially complicated disease

dynamics but only an inspection of the cost function itself.

Example 4. Suppose that the cost function is linear in time:

c(t) = c0 + k · t,

where c0 > 0 and k > 0. In this case, the term ċ(t)
c2(t)

= k
c2(t)

is non-increasing over time.

Therefore, as in the arguments in the proof of Proposition 2, there do not exist two

points in time t1 and t2 such that t1 < t2, İ(t1) = İ(t2) = 0, and Ï(t1) < 0 and Ï(t2) < 0.

Consequently, if İ(0) > 0, prevalence is single-peaked.37

Example 5. Suppose that the cost function features distancing fatigue of the following

form:

ċ(t) = k(1− ε(t))c(t) with c(0) = c0,

where k > 0 is a constant. In this formulation, individuals’ distancing cost is increasing

in the past distancing choices and non-decreasing over time. The sufficient condition

implies that

k ≤ ε2(t)

1− ε(t)
c(t)

η
.

Note that the right-hand side can be bounded from below by ε2 c0
η

where ε := mint ε(t).

Hence, whenever individuals never fully distance themselves, that is, whenever ε > 0, no

37More generally, the same argument holds for a distancing cost function that is concave in time.
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Figure 6: Example 4. The left panel depicts the prevalence I over time. While I initially
decreases, it starts to increase at around t = 5. The right panel depicts the exposure
level ε over time.

second wave can arise if the accumulation rate k is sufficiently low.

Note that an important qualification for the single-peakedness in the previous two

examples is that İ(0) > 0. If, however, the prevalence decreases at the outset, İ(0) < 0,

a minimum can arise when the distancing costs vary over time.38 The right panel of

Figure 6 illustrates this point in the context of Example 4.39 The prevalence decreases

at the outset because it is not costly at all for the individuals to engage in distancing.

However, since the prevalence decreases and the distancing costs increase, the individuals

start increasing their exposure, which leads to an increase in the prevalence.

C Appendix to Section 4

C.1 Effect of Holidays

Example 6. We consider the effect of holidays. We let the baseline distancing cost

be c0 = 2, and suppose that the distancing cost jumps to c(t) = 2.2 from c0 during

a holiday season. Only for the purpose of illustration, the holiday season lasts for two

months between days 80 and 139. One can infer from the left panel of Figure 2 that

the new distancing cost function c jumps above the original threshold c and thus induces

38This is in contrast to the standard non-behavioral SIR model or the behavioral SIR model with
constant distancing cost.

39The parameters are (β, γ, η) = (0.3 + 1
7 ,

1
7 , 2761.63) and (I0, c0, k) = (5 × 10−4, 0.05, 0.005). As

discussed in footnote 22, the parameters (β, γ, η) are calibrated for the onset of COVID-19 (when the
cost of distancing is normalized at c = 2) as in Carnehl, Fukuda, and Kos (2023).
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Figure 7: Increased Distancing Cost during Holidays. The left panel depicts the preva-
lence I and especially the second wave. The right panel depicts the exposure level ε.

prevalence to increase. The left panel of Figure 7 illustrates the ensuing second wave

of infection. When the holiday season starts, individuals instantaneously best respond

to the higher distancing cost by increasing their exposure levels. Increased exposure, in

turn, leads to higher prevalence, to which then the individuals respond by decreasing their

exposure again. The right panel shows that individuals’ average exposure level eventually

returns to the level close to (but slightly above) the case in which the distancing cost is

fixed throughout.40 After roughly 20 days, at around day 100, the infection peaks for the

second time.41

C.2 Moderate Lockdown with Moderate Fatigue

Example 7. We provide a simple illustration that the peak prevalence in the second

wave may be higher than that in the first wave due to distancing fatigue. We illustrate

this point for a moderate lockdown policy with moderate level of distancing fatigue.

We let the baseline distancing cost be c0 = 2, and absent a mitigation policy, the

distancing cost follows equation (14) with k = 0.02 and r = 0.05. A social-distancing

measure is introduced on day t = 30: the distancing cost is reduced by 0.2 (10% of the

original distancing cost). The social-distancing measure is lifted on day t = 90: the

distancing cost is increased by 0.2 (10% of the original distancing cost).

40This means that the (10%) increase in the distancing cost is numerically close to the order in which
the prevalence at the second wave is higher than that at the first peak.

41Since the slope of the prevalence curve is close to zero during the holidays, the threshold distancing
cost c(t) becomes indeed close to 2.2 during the holidays. Hence, once the holiday season finishes, the
prevalence rapidly starts to decline, and in our example, towards the original prevalence level.
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Figure 8: Social-Distancing Policy with Distancing Fatigue. The left panel depicts the
threshold distancing cost function c over time. The central panel depicts the exposure
level ε over time. The right panel depicts the prevalence I over time.

Figure 8 depicts the threshold distancing cost c, the exposure ε, and the prevalence

I with and without the distancing policy (the solid and dashed curves, respectively).

The right panel shows that the second peak is higher than the first peak due to distanc-

ing fatigue. This is because, during when the social-distancing policy is implemented,

individuals accumulate distancing fatigue.

The dashed curve (the distancing cost c) in the left panel of Figure 8 shows that,

soon after the implementation of the social-distancing policy by which the distancing

cost is reduced, the distancing cost starts to increase. In contrast, the solid curve (the

threshold distancing cost c) in the left panel shows that the threshold distancing cost

is endogenously decreasing soon after the implementation of the social-distancing policy.

Thus, as in the right panel, the prevalence starts to increase after the implementation

of the social-distancing policy due to distancing fatigue. Moreover, in the left panel,

when the distancing policy is lifted on day 90, the distancing cost c is still higher than

the threshold distancing cost c. This suggests that, consistently with the right panel,

the lifting of the distancing policy creates the higher second wave. The fact that the

prevalence at the second peak is higher than the prevalence at the first peak (without the

distancing policy) suggests the undesirable effect of lifting the distancing policy on the

medical capacity constraint. The central panel suggests that a small increase in exposure

during when the distancing policy is implemented may cause the higher second wave.

D Far-sighted Decision-Making

We present a model with far-sighted decision-making, and provide numerical support for

our main insight: the decline of future mitigation-policy effectiveness after introducing a

current policy. Hence, the assumption of myopic decision-making is not the main driver
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of our findings.

As before, the individuals at each point in time decide the level of distancing, which

determines the likelihood of infection. An individual’s flow payoff from being in state

θ ∈ {S, I, R} is πθ. We assume πS ≥ πR ≥ πI .
42 The individual discounts the future at

rate ρ > 0.

A susceptible individual i with exposure εi(t) enjoys the instantaneous payoff πS −
ci(t)
2

(1 − εi(t))2. For ease of exposition, here we suppose that ċi(t) does not depend on

the current distancing 1 − εi(t) in (1), i.e., we suppose that the susceptible individual

i takes the distancing cost function ci as given when she decides her exposure. This is

because the main insight that the effectiveness of future mitigation-policies decline after

introducing a current policy holds under no distancing fatigue.43

Let 1 − pi(t) be the probability of being susceptible at time t and, conversely, pi(t)

the probability that an individual has become infected in the past. Then, ṗi(t) represents

the rate at which susceptible individuals become infected

ṗi(t) = εi(t)βI(t)(1− pi(t)),

with pi(0) = 0. Since we model the behavior of susceptible individuals, the probability

that they are infected at the outset is zero. Once an individual gets infected, her pro-

gression to recovery is independent of her behavior. Her continuation payoff from the

moment she became infected is VI = 1
ρ+γ

(
πI + γ

ρ
πR

)
.44

A susceptible individual who faces average exposure ε from her peers solves the prob-

lem

max
εi(·)∈[0,1]

∫ ∞
0

e−ρt
{

(1− pi(t))[πS −
ci(t)

2
(1− εi(t))2] + pi(t)ρVI

}
dt (24)

s.t.

ṗi(t) = βεi(t)I(t)(1− pi(t)),

pi(0) = 0,

the underlying SIR dynamics given by equations (6), (7) and (8) with the initial condition

42Models with endogenous cost of infection have been presented in Reluga (2010), Fenichel et al. (2011),
Fenichel (2013), McAdams, Song, and Zou (2023), Rachel (2020a), Toxvaerd (2020), among others. Yet,
analytical characterizations of equilibria even with constant distancing cost are rather elusive.

43As the analysis of distancing fatigue introduces an additional state variable and thus is complicated
for far-sighted individuals, we focus on the case in which each individual takes ci as exogenously given.
Our numerical analyses confirm that our main insights carry over to far-sighted individuals. In fact, this
shows an additional advantage of our myopic model when it comes to adding distancing fatigue.

44See Carnehl, Fukuda, and Kos (2023, Remark 1) for the formal derivation of VI .
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(S(0), I(0), R(0)) = (1 − I0, I0, 0) and I0 ∈ (0, 1), and the distancing cost function ci

satisfying (1), where di = 1− εi with ci(0) = c0.
45 The individual’s payoff can be thought

of as the expected value of being susceptible or infected at each point in time where the

flow payoff of an infected individual is ρVI .

We restrict attention to distancing cost functions ci which satisfy

πS − sup
t∈[0,∞)

ci(t)

2
> ρVI . (25)

This assumption states that even if a susceptible individual is fully distancing, her flow

payoff of being suceptible is greater than the flow payoff of being infected.

An equilibrium (S, I, R, c, ε, p) of the far-sighted decision-making model is defined

analogously to our main model. Note that, in equilibrium, each pi is determined by ε,

I, and c, and thus p = pi for each i. The cost of infection η = ηi, which is the co-state

variable associated with the individual problem, changes over time. While (S, I, R, c)

is solved forward, η is solved backward. Hence, analytically characterizing the set of

equilibria is untenable.

To characterize the forward-looking variable η, we set up the current-value Hamilto-

nian of problem (24):

Hi = (1− pi(t))[πS −
ci(t)

2
(1− εi(t))2] + pi(t)ρVI − ηi(t)βεi(t)I(t)(1− pi(t)),

where ηi(t) is the current-value co-state variable. It represents the marginal cost of an

increase in the probability of being infected at time t. The optimality condition with

respect to exposure εi(t) at time t is

∂Hi

∂εi(t)
= (1− pi(t))[ci(t)(1− εi(t))− βηi(t)I(t)] = 0.

Thus, the optimality condition delivers equilibrium distancing

di(t) =
βηi(t)I(t)

ci(t)
, (26)

provided that the entire distancing path admits an interior solution, i.e., that di(t) ∈ [0, 1]

for all t. One should keep in mind that the marginal cost of an increased probability of

infection, ηi(t), is positive due to the assumption given by (25). The current-value co-state

45Note that here we suppose that the individual i treats ci as given. When ċi depends on 1− εi(t), we
need to incorporate the law of motion for ci into the problem. Again, our assumption makes it easier to
analyze the time-varying distancing costs for far-sighted individuals.
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variable ηi follows the adjoint equation

η̇i(t) = ρηi(t) +
∂Hi

∂pi(t)

= ηi(t) (ρ+ εi(t)βI(t)) +

(
πS −

ci(t)

2
(1− εi(t))2 − ρVI

)
.

The transversality condition is lim
t→∞

e−ρtηi(t) = 0. In equilibrium, η = ηi for all i.

Using the adjoint equation and the transversality condition, we can solve for η.

Lemma 4. Suppose that the rest of the population is following the strategy ε, and εi is

the individual i’s best response. Then

ηi(t) =

∫ ∞
t

e−ρ(s−t)
1− pi(s)
1− pi(t)

(
πS −

ci(t)

2
(1− εi(s))2 − ρVI

)
ds.

Let (S, I, R, ε, p) be an equilibrium. Then

η(t) =

∫ ∞
t

e−ρ(s−t)
S(s)

S(t)

(
πS −

c(s)

2
(1− ε(s))2 − ρVI

)
ds.

The proof of this lemma is similar to that of Carnehl, Fukuda, and Kos (2023, Lemma

2), and thus it is omitted. Instead, we provide the interpretation of the lemma. We term

πS − c(t)
2

(1− ε(t))2 − ρVI the susceptibility premium at time t. It is the difference in flow

payoffs between being susceptible and being infected. The cost of getting infected, η(t), is

the discounted value of the susceptibility premium over time weighted by the conditional

probability of being susceptible at each time in the future, s ≥ t, S(s)
S(t)

. Distancing over a

period of time reduces the quality of life and, thus, the susceptibility premium. However,

it also decreases the probability that the individual will get infected and rewards her with

the premium for a longer period of time.

As in Carnehl, Fukuda, and Kos (2023, Lemma 3), one can also show that η is

bounded. Letting (S, I, R, c, ε, p) be an equilibrium,

πS − ρVI − c(t)
2

ρ+ β
≤ η(t) ≤ πS − ρVI

ρ
and lim

t→∞
η(t) =

πS − ρVI
ρ

.

As time passes, η eventually converges to the upper bound, which is attained when indi-

viduals choose full exposure in perpetuity without facing any risk of becoming infected.

This is the case in which getting infected would be most costly as there is no need to

distance and no risk of future infection. The convergence to this bound is intuitive, be-

cause the disease dies out and obviates the need for distancing in the limit as time goes
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Figure 9: Social-Distancing Policy. The left panel depicts the threshold distancing cost
function c over time. The central panel depicts the exposure level ε over time. The right
panel depicts the prevalence I over time.

to infinity.

Below, we present the results of our numerical simulations with endogenous η. We

calibrate the parameters for the beginning of COVID-19 (recall footnote 22 in the main

text). The value of η in the main text corresponds to the upper bound η = πS−ρVI
ρ

.46 For

the values of πS, ρ, and VI , see Carnehl, Fukuda, and Kos (2023).

Specifically, we revisit Example 2 with endogenous η. To that end, we define

c(t) :=


β2I(t)S(t)η(t)
βS(t)−γ , if S(t) > γ

β

∞, if S(t) ≤ γ
β

.

Note that the only difference from the main text is that η is now time-varying. This is

because the exposure level of the far-sighted individual is ε(t) = 1 − βη(t)I(t)
c(t)

. One can

show that Proposition 4 holds under this setting, as the proof in Appendix A simply

extends to this case.

The left panel of Figure 9 illustrates the threshold distancing function c. Figure 9

look similar to Figure 3.

To sum up, while one might argue that individuals do not fully discount the future,

the difficulty in predicting the path of an epidemic might induce them to simply respond

to the current state of the epidemic. In addition, analytical results for the SIR model

with endogenous distancing by far-sighted individuals are few and far between.47 The

46Hence, by assumption, in our numerical simulations of the model in which η is fixed at the upper
bound, individuals engage distancing more and the prevalence is lower. In contrast, by taking the lower
bound of η, we can also bound the prevalence from above. This way, the model with constant infection
cost can also shed light on the dynamics of the model with endogenous infection cost.

47In the context of behavioral SIR models, it has not even been established whether such a model
with equilibrium distancing has a single peak even for the case in which distancing cost is constant over
time. For example, in an optimal planner problem of distancing, Kruse and Strack (2022) show that the
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myopic model enables one to provide analytical insights and pave the road towards the

understanding of the model with far-sighted individuals. Moreover, our numerical analysis

highlights that assuming a fixed cost of infection is not the main driver of our findings.

prevalence peaks at most twice.
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